Saleh Hayat , Mansoor Ahmad Khan , Malak Azmat Ali , Afzal Khan , Razan A. Alshgari , Saikh Mohammad , Samah Al-Qaisi
{"title":"研究用于绿色能源应用的 X2ScIO6(X = K、Rb 和 Cs)双包晶半导体的光学、电子和热电特性","authors":"Saleh Hayat , Mansoor Ahmad Khan , Malak Azmat Ali , Afzal Khan , Razan A. Alshgari , Saikh Mohammad , Samah Al-Qaisi","doi":"10.1016/j.comptc.2024.114992","DOIUrl":null,"url":null,"abstract":"<div><div>We present our findings on the structural, optical, electronic, and thermoelectric characteristics of X<sub>2</sub>ScIO<sub>6</sub> (X = K, Rb, and Cs) double perovskites using density functional theory (DFT) and post-DFT calculations. The calculated tolerance factor values exhibit the structural stability of these double perovskites, whereas negative values of the formation energy and Gibbs free energy verify their thermodynamic stability. Energy band structure calculations reveal the<!--> <!-->semiconducting nature of these perovskites with band gaps of 1.37, 1.03, and 0.55 eV for K<sub>2</sub>ScIO<sub>6</sub>, Rb<sub>2</sub>ScIO<sub>6,</sub> and Cs<sub>2</sub>ScIO<sub>6</sub> respectively. These double perovskites could achieve higher optical absorption in the ultraviolet region beyond 5 eV. The Seebeck coefficient’s positive value indicates these compounds’ p-type nature. Their figure of merit values are greater than the other conventional double perovskites and therefore could be efficiently utilized in thermoelectric applications at elevated temperatures.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1243 ","pages":"Article 114992"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating optical, electronic, and thermoelectric properties of X2ScIO6 (X = K, Rb, and Cs) double perovskite semiconductors for green energy applications\",\"authors\":\"Saleh Hayat , Mansoor Ahmad Khan , Malak Azmat Ali , Afzal Khan , Razan A. Alshgari , Saikh Mohammad , Samah Al-Qaisi\",\"doi\":\"10.1016/j.comptc.2024.114992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present our findings on the structural, optical, electronic, and thermoelectric characteristics of X<sub>2</sub>ScIO<sub>6</sub> (X = K, Rb, and Cs) double perovskites using density functional theory (DFT) and post-DFT calculations. The calculated tolerance factor values exhibit the structural stability of these double perovskites, whereas negative values of the formation energy and Gibbs free energy verify their thermodynamic stability. Energy band structure calculations reveal the<!--> <!-->semiconducting nature of these perovskites with band gaps of 1.37, 1.03, and 0.55 eV for K<sub>2</sub>ScIO<sub>6</sub>, Rb<sub>2</sub>ScIO<sub>6,</sub> and Cs<sub>2</sub>ScIO<sub>6</sub> respectively. These double perovskites could achieve higher optical absorption in the ultraviolet region beyond 5 eV. The Seebeck coefficient’s positive value indicates these compounds’ p-type nature. Their figure of merit values are greater than the other conventional double perovskites and therefore could be efficiently utilized in thermoelectric applications at elevated temperatures.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1243 \",\"pages\":\"Article 114992\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X24005310\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24005310","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们利用密度泛函理论(DFT)和后 DFT 计算,展示了 X2ScIO6(X = K、Rb 和 Cs)双包晶的结构、光学、电子和热电特性。计算得出的公差因子值显示了这些双包晶石的结构稳定性,而形成能和吉布斯自由能的负值则验证了它们的热力学稳定性。能带结构计算揭示了这些过氧化物的半导体性质,K2ScIO6、Rb2ScIO6 和 Cs2ScIO6 的能带隙分别为 1.37、1.03 和 0.55 eV。这些双包晶石可在 5 eV 以上的紫外区实现更高的光吸收。塞贝克系数的正值表明了这些化合物的 p 型性质。它们的优点值高于其他传统的双包晶石,因此可以在高温下有效地应用于热电领域。
Investigating optical, electronic, and thermoelectric properties of X2ScIO6 (X = K, Rb, and Cs) double perovskite semiconductors for green energy applications
We present our findings on the structural, optical, electronic, and thermoelectric characteristics of X2ScIO6 (X = K, Rb, and Cs) double perovskites using density functional theory (DFT) and post-DFT calculations. The calculated tolerance factor values exhibit the structural stability of these double perovskites, whereas negative values of the formation energy and Gibbs free energy verify their thermodynamic stability. Energy band structure calculations reveal the semiconducting nature of these perovskites with band gaps of 1.37, 1.03, and 0.55 eV for K2ScIO6, Rb2ScIO6, and Cs2ScIO6 respectively. These double perovskites could achieve higher optical absorption in the ultraviolet region beyond 5 eV. The Seebeck coefficient’s positive value indicates these compounds’ p-type nature. Their figure of merit values are greater than the other conventional double perovskites and therefore could be efficiently utilized in thermoelectric applications at elevated temperatures.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.