DLPFC上的双侧tDCS可增强气压感受器反射灵敏度并抑制与血压相关的低痛感

IF 3.7 3区 医学 Q1 CLINICAL NEUROLOGY Clinical Neurophysiology Pub Date : 2024-11-22 DOI:10.1016/j.clinph.2024.11.011
Casandra I. Montoro , Pilar Ruiz-Medina , Stefan Duschek , Nicolás Gutiérrez-Palma , Gustavo A. Reyes del Paso
{"title":"DLPFC上的双侧tDCS可增强气压感受器反射灵敏度并抑制与血压相关的低痛感","authors":"Casandra I. Montoro ,&nbsp;Pilar Ruiz-Medina ,&nbsp;Stefan Duschek ,&nbsp;Nicolás Gutiérrez-Palma ,&nbsp;Gustavo A. Reyes del Paso","doi":"10.1016/j.clinph.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study investigated the impact of transcranial direct stimulation (tDCS) on pain perception, baroreflex sensitivity (BRS), and blood pressure (BP)-related hypoalgesia.</div></div><div><h3>Method</h3><div>Fifty-eight healthy participants were randomized to receive 1) bi-hemispheric tDCS over the dorsolateral prefrontal cortex (DLPFC) at 2 mA for 20 min, or 2) non-stimulation (Sham). Pain measures (threshold, tolerance, intensity and unpleasantness), emotional state (anxiety and mood), continuous BP, and electrocardiogram (ECG) data were recorded before, during, and after stimulation.</div></div><div><h3>Results</h3><div>tDCS stimulation was followed by increases in BRS, pain intensity and unpleasantness. Anxiety decreased in the Sham group, but not in the tDCS group. Positive correlations between BP and pain threshold and tolerance before stimulation were observed. These remained during stimulation in the Sham group, but not in the tDCS group. Moreover, negative associations between BRS and BP only persisted in the Sham group.</div></div><div><h3>Discussion</h3><div>The results suggest that bilateral tDCS over the DLPFC enhances BRS and modulates pain perception and BP-related mechanisms. tDCS increases pain perception by inhibiting BP-related hypoalgesia and preventing habituation of anxiety.</div></div><div><h3>Significance</h3><div>Low BRS is a powerful prognostic factor of cardiovascular disease, such that its increase via tDCS may be a new therapeutic strategy for cardiovascular health promotion.</div></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"169 ","pages":"Pages 11-22"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilateral tDCS over the DLPFC enhances baroreceptor reflex sensitivity and inhibits blood pressure-related hypoalgesia\",\"authors\":\"Casandra I. Montoro ,&nbsp;Pilar Ruiz-Medina ,&nbsp;Stefan Duschek ,&nbsp;Nicolás Gutiérrez-Palma ,&nbsp;Gustavo A. Reyes del Paso\",\"doi\":\"10.1016/j.clinph.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>This study investigated the impact of transcranial direct stimulation (tDCS) on pain perception, baroreflex sensitivity (BRS), and blood pressure (BP)-related hypoalgesia.</div></div><div><h3>Method</h3><div>Fifty-eight healthy participants were randomized to receive 1) bi-hemispheric tDCS over the dorsolateral prefrontal cortex (DLPFC) at 2 mA for 20 min, or 2) non-stimulation (Sham). Pain measures (threshold, tolerance, intensity and unpleasantness), emotional state (anxiety and mood), continuous BP, and electrocardiogram (ECG) data were recorded before, during, and after stimulation.</div></div><div><h3>Results</h3><div>tDCS stimulation was followed by increases in BRS, pain intensity and unpleasantness. Anxiety decreased in the Sham group, but not in the tDCS group. Positive correlations between BP and pain threshold and tolerance before stimulation were observed. These remained during stimulation in the Sham group, but not in the tDCS group. Moreover, negative associations between BRS and BP only persisted in the Sham group.</div></div><div><h3>Discussion</h3><div>The results suggest that bilateral tDCS over the DLPFC enhances BRS and modulates pain perception and BP-related mechanisms. tDCS increases pain perception by inhibiting BP-related hypoalgesia and preventing habituation of anxiety.</div></div><div><h3>Significance</h3><div>Low BRS is a powerful prognostic factor of cardiovascular disease, such that its increase via tDCS may be a new therapeutic strategy for cardiovascular health promotion.</div></div>\",\"PeriodicalId\":10671,\"journal\":{\"name\":\"Clinical Neurophysiology\",\"volume\":\"169 \",\"pages\":\"Pages 11-22\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138824572400333X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824572400333X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了经颅直接刺激(tDCS)对痛觉、气压反射敏感性(BRS)和血压(BP)相关低痛觉的影响。方法:58 名健康参与者随机接受 1)背外侧前额叶皮层(DLPFC)上的双半球 tDCS,2 毫安,20 分钟;或 2)非刺激(Sham)。在刺激前、刺激中和刺激后,记录了疼痛测量值(阈值、耐受性、强度和不快感)、情绪状态(焦虑和情绪)、连续血压和心电图数据。Sham 组的焦虑感降低,而 tDCS 组的焦虑感没有降低。在刺激前,血压与疼痛阈值和耐受性呈正相关。在刺激过程中,Sham 组仍然存在这种相关性,而 tDCS 组则没有。tDCS通过抑制与血压相关的低痛觉和防止焦虑的习惯化来提高痛觉。意义低BRS是心血管疾病的一个强有力的预后因素,因此通过tDCS提高BRS可能是促进心血管健康的一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bilateral tDCS over the DLPFC enhances baroreceptor reflex sensitivity and inhibits blood pressure-related hypoalgesia

Objective

This study investigated the impact of transcranial direct stimulation (tDCS) on pain perception, baroreflex sensitivity (BRS), and blood pressure (BP)-related hypoalgesia.

Method

Fifty-eight healthy participants were randomized to receive 1) bi-hemispheric tDCS over the dorsolateral prefrontal cortex (DLPFC) at 2 mA for 20 min, or 2) non-stimulation (Sham). Pain measures (threshold, tolerance, intensity and unpleasantness), emotional state (anxiety and mood), continuous BP, and electrocardiogram (ECG) data were recorded before, during, and after stimulation.

Results

tDCS stimulation was followed by increases in BRS, pain intensity and unpleasantness. Anxiety decreased in the Sham group, but not in the tDCS group. Positive correlations between BP and pain threshold and tolerance before stimulation were observed. These remained during stimulation in the Sham group, but not in the tDCS group. Moreover, negative associations between BRS and BP only persisted in the Sham group.

Discussion

The results suggest that bilateral tDCS over the DLPFC enhances BRS and modulates pain perception and BP-related mechanisms. tDCS increases pain perception by inhibiting BP-related hypoalgesia and preventing habituation of anxiety.

Significance

Low BRS is a powerful prognostic factor of cardiovascular disease, such that its increase via tDCS may be a new therapeutic strategy for cardiovascular health promotion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Neurophysiology
Clinical Neurophysiology 医学-临床神经学
CiteScore
8.70
自引率
6.40%
发文量
932
审稿时长
59 days
期刊介绍: As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology. Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.
期刊最新文献
Repetitive muscle silent periods in acute post-anoxic brain injury: A novel phenotype of negative myoclonus Bilateral tDCS over the DLPFC enhances baroreceptor reflex sensitivity and inhibits blood pressure-related hypoalgesia Muscle ultrasound aids diagnosis in amyotrophic lateral sclerosis. Towards a shared electrogenesis mechanism in direct cortical responses, axono-cortical evoked potentials, and cortico-cortical evoked potentials. Metrics for evaluation of automatic epileptogenic zone localization in intracranial electrophysiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1