Zhiming Zhao , Yining Lyu , Jinqing Lyu , Xiaoxin Zhu , Jicheng Li , Deqiu Yang
{"title":"气吸式微型单粒播种器的播种板对播种质量的影响","authors":"Zhiming Zhao , Yining Lyu , Jinqing Lyu , Xiaoxin Zhu , Jicheng Li , Deqiu Yang","doi":"10.1016/j.compag.2024.109680","DOIUrl":null,"url":null,"abstract":"<div><div>The existing seed-metering device has the problems of low qualified index and high multiple index of minituber mechanized seeding. In this work, a seed-metering device suitable for precision seeding of minituber was designed to solve the above problems and improve the seeding efficiency. By analyzing the motion mechanism of minituber on the seeding plate, it is determined that the diameter of the suction seeding hole, the rotation speed and tilt angle of the seeding plate and the negative pressure value are the main factors affecting the seeding performance of the seed-metering device. The steady-state airflow in the negative pressure chamber was analyzed by computational fluid dynamics. When the diameter of the suction seeding hole is 8 mm and the rotation speed of the seeding plate is 40 r/min, the highest negative pressure value is reached at the suction seeding hole. The CFD-DEM coupling simulation method was used to investigate the stress of minituber and the effect of adsorption of minituber by suction seeding hole under different tilt angles of seeding plate and negative pressures. The coupling simulation results were verified and optimized by bench test, and the movement of the minituber on the seeding plate was observed by a high-speed camera. Design Expert was used to optimize the test results, and it is found that when the tilt angle is 20° and the negative pressure is −6000 Pa, the working effect of the seed-metering device could achieve the multiple index is below 3.5 %, the miss seeding index no more than 1.5 %, the qualified index remained above 94.5 %, and the coefficient of variation is kept under 11 %. This work puts forward new ideas in improving the seeding quality of high-speed precision seed-metering device, and also provides a new design idea for the development of seeding device.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109680"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of a seeding plate of the air-suction minituber precision seed-metering device on seeding quality\",\"authors\":\"Zhiming Zhao , Yining Lyu , Jinqing Lyu , Xiaoxin Zhu , Jicheng Li , Deqiu Yang\",\"doi\":\"10.1016/j.compag.2024.109680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existing seed-metering device has the problems of low qualified index and high multiple index of minituber mechanized seeding. In this work, a seed-metering device suitable for precision seeding of minituber was designed to solve the above problems and improve the seeding efficiency. By analyzing the motion mechanism of minituber on the seeding plate, it is determined that the diameter of the suction seeding hole, the rotation speed and tilt angle of the seeding plate and the negative pressure value are the main factors affecting the seeding performance of the seed-metering device. The steady-state airflow in the negative pressure chamber was analyzed by computational fluid dynamics. When the diameter of the suction seeding hole is 8 mm and the rotation speed of the seeding plate is 40 r/min, the highest negative pressure value is reached at the suction seeding hole. The CFD-DEM coupling simulation method was used to investigate the stress of minituber and the effect of adsorption of minituber by suction seeding hole under different tilt angles of seeding plate and negative pressures. The coupling simulation results were verified and optimized by bench test, and the movement of the minituber on the seeding plate was observed by a high-speed camera. Design Expert was used to optimize the test results, and it is found that when the tilt angle is 20° and the negative pressure is −6000 Pa, the working effect of the seed-metering device could achieve the multiple index is below 3.5 %, the miss seeding index no more than 1.5 %, the qualified index remained above 94.5 %, and the coefficient of variation is kept under 11 %. This work puts forward new ideas in improving the seeding quality of high-speed precision seed-metering device, and also provides a new design idea for the development of seeding device.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"227 \",\"pages\":\"Article 109680\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924010718\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010718","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
The influence of a seeding plate of the air-suction minituber precision seed-metering device on seeding quality
The existing seed-metering device has the problems of low qualified index and high multiple index of minituber mechanized seeding. In this work, a seed-metering device suitable for precision seeding of minituber was designed to solve the above problems and improve the seeding efficiency. By analyzing the motion mechanism of minituber on the seeding plate, it is determined that the diameter of the suction seeding hole, the rotation speed and tilt angle of the seeding plate and the negative pressure value are the main factors affecting the seeding performance of the seed-metering device. The steady-state airflow in the negative pressure chamber was analyzed by computational fluid dynamics. When the diameter of the suction seeding hole is 8 mm and the rotation speed of the seeding plate is 40 r/min, the highest negative pressure value is reached at the suction seeding hole. The CFD-DEM coupling simulation method was used to investigate the stress of minituber and the effect of adsorption of minituber by suction seeding hole under different tilt angles of seeding plate and negative pressures. The coupling simulation results were verified and optimized by bench test, and the movement of the minituber on the seeding plate was observed by a high-speed camera. Design Expert was used to optimize the test results, and it is found that when the tilt angle is 20° and the negative pressure is −6000 Pa, the working effect of the seed-metering device could achieve the multiple index is below 3.5 %, the miss seeding index no more than 1.5 %, the qualified index remained above 94.5 %, and the coefficient of variation is kept under 11 %. This work puts forward new ideas in improving the seeding quality of high-speed precision seed-metering device, and also provides a new design idea for the development of seeding device.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.