利用基于无人机的 RGB 图像中的颜色参数对作物冠层体积进行加权,以估算马铃薯的地上生物量

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-11-22 DOI:10.1016/j.compag.2024.109678
Yang Liu , Fuqin Yang , Jibo Yue , Wanxue Zhu , Yiguang Fan , Jiejie Fan , Yanpeng Ma , Mingbo Bian , Riqiang Chen , Guijun Yang , Haikuan Feng
{"title":"利用基于无人机的 RGB 图像中的颜色参数对作物冠层体积进行加权,以估算马铃薯的地上生物量","authors":"Yang Liu ,&nbsp;Fuqin Yang ,&nbsp;Jibo Yue ,&nbsp;Wanxue Zhu ,&nbsp;Yiguang Fan ,&nbsp;Jiejie Fan ,&nbsp;Yanpeng Ma ,&nbsp;Mingbo Bian ,&nbsp;Riqiang Chen ,&nbsp;Guijun Yang ,&nbsp;Haikuan Feng","doi":"10.1016/j.compag.2024.109678","DOIUrl":null,"url":null,"abstract":"<div><div>Current techniques to estimate crop aboveground biomass (AGB) across the multiple growth stages mainly used optical remote-sensing techniques. However, this technology was limited by saturation of the canopy spectrum. To meet this problem, this study used digital images obtained by an unmanned aerial vehicle to extract the spectral and structural indicators of the crop canopy in three key potato growth stages. We took the color parameters (CP) of assorted color space transformations as the canopy spectral information, and crop height (CH), crop coverage (CC), and crop canopy volume (CCV) as the canopy structural indicators. Based on the complementary advantages of CP and CCV, we proposed a new metric: the color parameter-weighted crop-canopy volume (CCV<sub>CP</sub>). Results showed that the CH, CCV, and CCV<sub>CP</sub> correlated more strongly with potato AGB during the multi-growth stages than do CP and CC. The hue-weighted crop-canopy volume (CCV<sub>H</sub>) correlated most strongly with the potato AGB among all structural indicators. Using CH was more accurate in estimating potato AGB compared to CP and CC. Combining indicators (CP + CC/CH, CP + CC + CH) improved the accuracy of potato AGB estimation over the multi-growth stages. Except for the CP + CC + CH model, other AGB estimation models produced inaccurate AGB estimation than the models based on CCV and CCV<sub>H</sub>. The AGB estimation accuracy produced by the univariate-based CCV<sub>H</sub> model (R<sup>2</sup> = 0.65, RMSE = 281 kg/hm<sup>2</sup>, and NRMSE = 23.61 %) was comparable to that of the complex model [CP + CC + CH using random forest (RF) or multiple stepwise regression (MSR)]. Compared with CP + CC + CH using RF and MSR, the RMSE decreased and increased by 0.35 % and 4.24 %, respectively. Compared with CP, CP + CC, CP + CH, and CCV, the use of CCV<sub>H</sub> to estimate AGB decreased the RMSE by 10.24 %, 7.42 %, 6.36 %, and 6.33 %, respectively. Meanwhile, the performance of CCV<sub>H</sub> was verified at different stages and among varieties. Thus, this indicator can be used for monitoring potato growth to help guide field production management.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109678"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop canopy volume weighted by color parameters from UAV-based RGB imagery to estimate above-ground biomass of potatoes\",\"authors\":\"Yang Liu ,&nbsp;Fuqin Yang ,&nbsp;Jibo Yue ,&nbsp;Wanxue Zhu ,&nbsp;Yiguang Fan ,&nbsp;Jiejie Fan ,&nbsp;Yanpeng Ma ,&nbsp;Mingbo Bian ,&nbsp;Riqiang Chen ,&nbsp;Guijun Yang ,&nbsp;Haikuan Feng\",\"doi\":\"10.1016/j.compag.2024.109678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current techniques to estimate crop aboveground biomass (AGB) across the multiple growth stages mainly used optical remote-sensing techniques. However, this technology was limited by saturation of the canopy spectrum. To meet this problem, this study used digital images obtained by an unmanned aerial vehicle to extract the spectral and structural indicators of the crop canopy in three key potato growth stages. We took the color parameters (CP) of assorted color space transformations as the canopy spectral information, and crop height (CH), crop coverage (CC), and crop canopy volume (CCV) as the canopy structural indicators. Based on the complementary advantages of CP and CCV, we proposed a new metric: the color parameter-weighted crop-canopy volume (CCV<sub>CP</sub>). Results showed that the CH, CCV, and CCV<sub>CP</sub> correlated more strongly with potato AGB during the multi-growth stages than do CP and CC. The hue-weighted crop-canopy volume (CCV<sub>H</sub>) correlated most strongly with the potato AGB among all structural indicators. Using CH was more accurate in estimating potato AGB compared to CP and CC. Combining indicators (CP + CC/CH, CP + CC + CH) improved the accuracy of potato AGB estimation over the multi-growth stages. Except for the CP + CC + CH model, other AGB estimation models produced inaccurate AGB estimation than the models based on CCV and CCV<sub>H</sub>. The AGB estimation accuracy produced by the univariate-based CCV<sub>H</sub> model (R<sup>2</sup> = 0.65, RMSE = 281 kg/hm<sup>2</sup>, and NRMSE = 23.61 %) was comparable to that of the complex model [CP + CC + CH using random forest (RF) or multiple stepwise regression (MSR)]. Compared with CP + CC + CH using RF and MSR, the RMSE decreased and increased by 0.35 % and 4.24 %, respectively. Compared with CP, CP + CC, CP + CH, and CCV, the use of CCV<sub>H</sub> to estimate AGB decreased the RMSE by 10.24 %, 7.42 %, 6.36 %, and 6.33 %, respectively. Meanwhile, the performance of CCV<sub>H</sub> was verified at different stages and among varieties. Thus, this indicator can be used for monitoring potato growth to help guide field production management.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"227 \",\"pages\":\"Article 109678\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016816992401069X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992401069X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前估算作物多个生长阶段的地上生物量(AGB)的技术主要采用光学遥感技术。然而,这种技术受到冠层光谱饱和度的限制。针对这一问题,本研究利用无人机获取的数字图像提取了马铃薯三个关键生长阶段作物冠层的光谱和结构指标。我们将各种色彩空间变换的色彩参数(CP)作为冠层光谱信息,将作物高度(CH)、作物覆盖率(CC)和作物冠层体积(CCV)作为冠层结构指标。基于 CP 和 CCV 的互补优势,我们提出了一种新指标:颜色参数加权作物冠层体积(CCVCP)。结果表明,与 CP 和 CC 相比,CH、CCV 和 CCVCP 与马铃薯多生长期 AGB 的相关性更强。在所有结构指标中,色调加权作物冠层体积(CCVH)与马铃薯 AGB 的相关性最强。与 CP 和 CC 相比,使用 CH 估算马铃薯 AGB 更准确。组合指标(CP + CC/CH、CP + CC + CH)提高了马铃薯在多个生长阶段AGB估算的准确性。除 CP + CC + CH 模型外,其他 AGB 估算模型的 AGB 估算结果均低于基于 CCV 和 CCVH 的模型。基于单变量的CCVH模型(R2 = 0.65,RMSE = 281 kg/hm2,NRMSE = 23.61 %)的AGB估计精度与复合模型[使用随机森林(RF)或多元逐步回归(MSR)的CP + CC + CH]相当。与使用 RF 和 MSR 的 CP + CC + CH 相比,均方根误差分别减少了 0.35 % 和增加了 4.24 %。与 CP、CP + CC、CP + CH 和 CCV 相比,使用 CCVH 估算 AGB 的均方根误差分别降低了 10.24 %、7.42 %、6.36 % 和 6.33 %。同时,CCVH 的性能在不同阶段和不同品种之间都得到了验证。因此,该指标可用于监测马铃薯生长,帮助指导田间生产管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crop canopy volume weighted by color parameters from UAV-based RGB imagery to estimate above-ground biomass of potatoes
Current techniques to estimate crop aboveground biomass (AGB) across the multiple growth stages mainly used optical remote-sensing techniques. However, this technology was limited by saturation of the canopy spectrum. To meet this problem, this study used digital images obtained by an unmanned aerial vehicle to extract the spectral and structural indicators of the crop canopy in three key potato growth stages. We took the color parameters (CP) of assorted color space transformations as the canopy spectral information, and crop height (CH), crop coverage (CC), and crop canopy volume (CCV) as the canopy structural indicators. Based on the complementary advantages of CP and CCV, we proposed a new metric: the color parameter-weighted crop-canopy volume (CCVCP). Results showed that the CH, CCV, and CCVCP correlated more strongly with potato AGB during the multi-growth stages than do CP and CC. The hue-weighted crop-canopy volume (CCVH) correlated most strongly with the potato AGB among all structural indicators. Using CH was more accurate in estimating potato AGB compared to CP and CC. Combining indicators (CP + CC/CH, CP + CC + CH) improved the accuracy of potato AGB estimation over the multi-growth stages. Except for the CP + CC + CH model, other AGB estimation models produced inaccurate AGB estimation than the models based on CCV and CCVH. The AGB estimation accuracy produced by the univariate-based CCVH model (R2 = 0.65, RMSE = 281 kg/hm2, and NRMSE = 23.61 %) was comparable to that of the complex model [CP + CC + CH using random forest (RF) or multiple stepwise regression (MSR)]. Compared with CP + CC + CH using RF and MSR, the RMSE decreased and increased by 0.35 % and 4.24 %, respectively. Compared with CP, CP + CC, CP + CH, and CCV, the use of CCVH to estimate AGB decreased the RMSE by 10.24 %, 7.42 %, 6.36 %, and 6.33 %, respectively. Meanwhile, the performance of CCVH was verified at different stages and among varieties. Thus, this indicator can be used for monitoring potato growth to help guide field production management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Counting wheat heads using a simulation model Optimization and testing of a mechanical roller seeder based on DEM-MBD rice potting tray Development of plant phenotyping system using Pan Tilt Zoom camera and verification of its validity An IoT-based data analysis system: A case study on tomato cultivation under different irrigation regimes Pushing the boundaries of aphid detection: An investigation into mmWaveRadar and machine learning synergy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1