利用贝叶斯神经网络代理进行多任务优化,以估算仿真模型参数

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-11-22 DOI:10.1016/j.csda.2024.108097
Hyungjin Kim , Chuljin Park , Heeyoung Kim
{"title":"利用贝叶斯神经网络代理进行多任务优化,以估算仿真模型参数","authors":"Hyungjin Kim ,&nbsp;Chuljin Park ,&nbsp;Heeyoung Kim","doi":"10.1016/j.csda.2024.108097","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel framework for efficient parameter estimation in simulation models, formulated as an optimization problem that minimizes the discrepancy between physical system observations and simulation model outputs. Our framework, called multi-task optimization with Bayesian neural network surrogates (MOBS), is designed for scenarios that require the simultaneous estimation of multiple sets of parameters, each set corresponding to a distinct set of observations, while also enabling fast parameter estimation essential for real-time process monitoring and control. MOBS integrates a heuristic search algorithm, utilizing a single-layer Bayesian neural network surrogate model trained on an initial simulation dataset. This surrogate model is shared across multiple tasks to select and evaluate candidate parameter values, facilitating efficient multi-task optimization. We provide a closed-form parameter screening rule and demonstrate that the expected number of simulation runs converges to a user-specified threshold. Our framework was applied to a numerical example and a semiconductor manufacturing case study, significantly reducing computational costs while achieving accurate parameter estimation.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"204 ","pages":"Article 108097"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-task optimization with Bayesian neural network surrogates for parameter estimation of a simulation model\",\"authors\":\"Hyungjin Kim ,&nbsp;Chuljin Park ,&nbsp;Heeyoung Kim\",\"doi\":\"10.1016/j.csda.2024.108097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel framework for efficient parameter estimation in simulation models, formulated as an optimization problem that minimizes the discrepancy between physical system observations and simulation model outputs. Our framework, called multi-task optimization with Bayesian neural network surrogates (MOBS), is designed for scenarios that require the simultaneous estimation of multiple sets of parameters, each set corresponding to a distinct set of observations, while also enabling fast parameter estimation essential for real-time process monitoring and control. MOBS integrates a heuristic search algorithm, utilizing a single-layer Bayesian neural network surrogate model trained on an initial simulation dataset. This surrogate model is shared across multiple tasks to select and evaluate candidate parameter values, facilitating efficient multi-task optimization. We provide a closed-form parameter screening rule and demonstrate that the expected number of simulation runs converges to a user-specified threshold. Our framework was applied to a numerical example and a semiconductor manufacturing case study, significantly reducing computational costs while achieving accurate parameter estimation.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"204 \",\"pages\":\"Article 108097\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001816\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001816","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们为仿真模型中的高效参数估计提出了一个新框架,该框架被表述为一个优化问题,可最大限度地减少物理系统观测结果与仿真模型输出结果之间的差异。我们的框架名为 "贝叶斯神经网络代理多任务优化(MOBS)",专为需要同时估算多组参数(每组参数对应一组不同的观测值)的情况而设计,同时还能实现实时过程监测和控制所必需的快速参数估算。MOBS 集成了启发式搜索算法,利用在初始模拟数据集上训练的单层贝叶斯神经网络代理模型。该代理模型在多个任务中共享,用于选择和评估候选参数值,从而促进高效的多任务优化。我们提供了一个闭式参数筛选规则,并证明预期模拟运行次数会收敛到用户指定的阈值。我们的框架被应用于一个数值示例和一个半导体制造案例研究,在实现精确参数估计的同时大大降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-task optimization with Bayesian neural network surrogates for parameter estimation of a simulation model
We propose a novel framework for efficient parameter estimation in simulation models, formulated as an optimization problem that minimizes the discrepancy between physical system observations and simulation model outputs. Our framework, called multi-task optimization with Bayesian neural network surrogates (MOBS), is designed for scenarios that require the simultaneous estimation of multiple sets of parameters, each set corresponding to a distinct set of observations, while also enabling fast parameter estimation essential for real-time process monitoring and control. MOBS integrates a heuristic search algorithm, utilizing a single-layer Bayesian neural network surrogate model trained on an initial simulation dataset. This surrogate model is shared across multiple tasks to select and evaluate candidate parameter values, facilitating efficient multi-task optimization. We provide a closed-form parameter screening rule and demonstrate that the expected number of simulation runs converges to a user-specified threshold. Our framework was applied to a numerical example and a semiconductor manufacturing case study, significantly reducing computational costs while achieving accurate parameter estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Multi-task optimization with Bayesian neural network surrogates for parameter estimation of a simulation model Optimal sequential detection by sparsity likelihood Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation High-dimensional copula-based Wasserstein dependence Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1