{"title":"基于 Wasserstein 依赖性的高维协程","authors":"Steven De Keyser, Irène Gijbels","doi":"10.1016/j.csda.2024.108096","DOIUrl":null,"url":null,"abstract":"<div><div>The aim is to generalize 2-Wasserstein dependence coefficients to measure dependence between a finite number of random vectors. This generalization includes theoretical properties, and in particular focuses on an interpretation of maximal dependence and an asymptotic normality result for a proposed semi-parametric estimator under a Gaussian copula assumption. In addition, it is of interest to look at general axioms for dependence measures between multiple random vectors, at plausible normalizations, and at various examples. Afterwards, it is important to study plug-in estimators based on penalized empirical covariance matrices in order to deal with high dimensionality issues and taking possible marginal independencies into account by inducing (block) sparsity. The latter ideas are investigated via a simulation study, considering other dependence coefficients as well. The use of the developed methods is illustrated in two real data applications.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"204 ","pages":"Article 108096"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional copula-based Wasserstein dependence\",\"authors\":\"Steven De Keyser, Irène Gijbels\",\"doi\":\"10.1016/j.csda.2024.108096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim is to generalize 2-Wasserstein dependence coefficients to measure dependence between a finite number of random vectors. This generalization includes theoretical properties, and in particular focuses on an interpretation of maximal dependence and an asymptotic normality result for a proposed semi-parametric estimator under a Gaussian copula assumption. In addition, it is of interest to look at general axioms for dependence measures between multiple random vectors, at plausible normalizations, and at various examples. Afterwards, it is important to study plug-in estimators based on penalized empirical covariance matrices in order to deal with high dimensionality issues and taking possible marginal independencies into account by inducing (block) sparsity. The latter ideas are investigated via a simulation study, considering other dependence coefficients as well. The use of the developed methods is illustrated in two real data applications.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"204 \",\"pages\":\"Article 108096\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001804\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001804","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The aim is to generalize 2-Wasserstein dependence coefficients to measure dependence between a finite number of random vectors. This generalization includes theoretical properties, and in particular focuses on an interpretation of maximal dependence and an asymptotic normality result for a proposed semi-parametric estimator under a Gaussian copula assumption. In addition, it is of interest to look at general axioms for dependence measures between multiple random vectors, at plausible normalizations, and at various examples. Afterwards, it is important to study plug-in estimators based on penalized empirical covariance matrices in order to deal with high dimensionality issues and taking possible marginal independencies into account by inducing (block) sparsity. The latter ideas are investigated via a simulation study, considering other dependence coefficients as well. The use of the developed methods is illustrated in two real data applications.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]