用于光伏(PV)系统的非洲秃鹫优化 RNN 算法最大功率点跟踪(MPPT)控制器

Q4 Engineering Measurement Sensors Pub Date : 2024-10-24 DOI:10.1016/j.measen.2024.101392
Chundi Jiang
{"title":"用于光伏(PV)系统的非洲秃鹫优化 RNN 算法最大功率点跟踪(MPPT)控制器","authors":"Chundi Jiang","doi":"10.1016/j.measen.2024.101392","DOIUrl":null,"url":null,"abstract":"<div><div>Normally, the solar photovoltaic system, the stand-alone or grid-connected system delivers power; it has a photovoltaic panel, a DC-DC converter, and a load consist. A fast and efficient MPPT method is required to track maximum power from photovoltaic panels and DC-DC converters under varying temperatures and irradiance. This study presents a smart controller-established MPPT procedure for a separate photovoltaic structure to trace the maximum power. A meta-heuristic African vulture optimized recurrent neural network (AVO-RNN) is proposed to remove the extreme power as of presented solar vitality for a 3-phase shunt Active Power Filter (APF) grid-linked PV structure. To enhance MPP tracking in photovoltaic arrays a hybrid technique is proposed. It addresses the limitations of traditional methods under varying irradiation by incorporating both current and voltage from the photovoltaic array with the duty cycle of the DC-DC Boost converter as the output constraint. The suggested method reduced as AVOA-RNN MPPT controller established on the African vulture optimization (AVO) algorithm that is beneficial to train the established RNN and to change the joining weights and preferences to get the optimum ideals of duty-cycle converter conforming to the maximum power point of a photovoltaic array. To address grid requirements a 3-phase shunt active power filter (SAPF) is utilized. The proposed MPPT algorithm is validated with MATLAB. The proposed hybrid AVOA-RNN technique achieves an overall accuracy of 99.81 % than existing hybrid PSO-RNN, conventional INC, SSA-GWO, and FO-INC techniques of 93.11 %, 94.42 %, 96.75 % and 98.12 % respectively.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"36 ","pages":"Article 101392"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"African vulture optimized RNN algorithm maximum power point tracking (MPPT) controller for photovoltaic (PV) system\",\"authors\":\"Chundi Jiang\",\"doi\":\"10.1016/j.measen.2024.101392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Normally, the solar photovoltaic system, the stand-alone or grid-connected system delivers power; it has a photovoltaic panel, a DC-DC converter, and a load consist. A fast and efficient MPPT method is required to track maximum power from photovoltaic panels and DC-DC converters under varying temperatures and irradiance. This study presents a smart controller-established MPPT procedure for a separate photovoltaic structure to trace the maximum power. A meta-heuristic African vulture optimized recurrent neural network (AVO-RNN) is proposed to remove the extreme power as of presented solar vitality for a 3-phase shunt Active Power Filter (APF) grid-linked PV structure. To enhance MPP tracking in photovoltaic arrays a hybrid technique is proposed. It addresses the limitations of traditional methods under varying irradiation by incorporating both current and voltage from the photovoltaic array with the duty cycle of the DC-DC Boost converter as the output constraint. The suggested method reduced as AVOA-RNN MPPT controller established on the African vulture optimization (AVO) algorithm that is beneficial to train the established RNN and to change the joining weights and preferences to get the optimum ideals of duty-cycle converter conforming to the maximum power point of a photovoltaic array. To address grid requirements a 3-phase shunt active power filter (SAPF) is utilized. The proposed MPPT algorithm is validated with MATLAB. The proposed hybrid AVOA-RNN technique achieves an overall accuracy of 99.81 % than existing hybrid PSO-RNN, conventional INC, SSA-GWO, and FO-INC techniques of 93.11 %, 94.42 %, 96.75 % and 98.12 % respectively.</div></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"36 \",\"pages\":\"Article 101392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424003684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424003684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

通常情况下,太阳能光伏系统,无论是独立系统还是并网系统,都由光伏板、DC-DC 转换器和负载组成。需要一种快速高效的 MPPT 方法来跟踪光伏电池板和 DC-DC 转换器在不同温度和辐照度下的最大功率。本研究提出了一种智能控制器建立的 MPPT 程序,用于跟踪独立光伏结构的最大功率。该研究提出了一种元启发式非洲秃鹫优化递归神经网络(AVO-RNN),用于消除三相并联有源电力滤波器(APF)并网光伏结构的极端功率。为增强光伏阵列的 MPP 跟踪,提出了一种混合技术。它通过将光伏阵列的电流和电压与 DC-DC 升压转换器的占空比作为输出约束,解决了传统方法在不同辐照度下的局限性。所建议的方法还原为 AVOA-RNN MPPT 控制器,该控制器建立在非洲秃鹫优化(AVO)算法上,有利于训练已建立的 RNN,并改变加入权重和偏好,以获得符合光伏阵列最大功率点的占空比转换器的最佳理想值。为满足电网要求,采用了三相并联有源电力滤波器(SAPF)。MATLAB 验证了所提出的 MPPT 算法。与现有的混合 PSO-RNN、传统 INC、SSA-GWO 和 FO-INC 技术(分别为 93.11%、94.42%、96.75% 和 98.12%)相比,拟议的混合 AVOA-RNN 技术的总体精度达到了 99.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
African vulture optimized RNN algorithm maximum power point tracking (MPPT) controller for photovoltaic (PV) system
Normally, the solar photovoltaic system, the stand-alone or grid-connected system delivers power; it has a photovoltaic panel, a DC-DC converter, and a load consist. A fast and efficient MPPT method is required to track maximum power from photovoltaic panels and DC-DC converters under varying temperatures and irradiance. This study presents a smart controller-established MPPT procedure for a separate photovoltaic structure to trace the maximum power. A meta-heuristic African vulture optimized recurrent neural network (AVO-RNN) is proposed to remove the extreme power as of presented solar vitality for a 3-phase shunt Active Power Filter (APF) grid-linked PV structure. To enhance MPP tracking in photovoltaic arrays a hybrid technique is proposed. It addresses the limitations of traditional methods under varying irradiation by incorporating both current and voltage from the photovoltaic array with the duty cycle of the DC-DC Boost converter as the output constraint. The suggested method reduced as AVOA-RNN MPPT controller established on the African vulture optimization (AVO) algorithm that is beneficial to train the established RNN and to change the joining weights and preferences to get the optimum ideals of duty-cycle converter conforming to the maximum power point of a photovoltaic array. To address grid requirements a 3-phase shunt active power filter (SAPF) is utilized. The proposed MPPT algorithm is validated with MATLAB. The proposed hybrid AVOA-RNN technique achieves an overall accuracy of 99.81 % than existing hybrid PSO-RNN, conventional INC, SSA-GWO, and FO-INC techniques of 93.11 %, 94.42 %, 96.75 % and 98.12 % respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Vehicle maneuver recognition and correction algorithm for road quality measurement system optimization A simple and inexpensive design of radioactive source for accurate level and height gauging in petrochemical industries Pneumonia detection from X-ray images using federated learning–An unsupervised learning approach Number plate recognition smart parking management system using IoT Collaboration of clustering and classification techniques for better prediction of severity of heart stroke using deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1