通过可操作性事件图式和领域自适应预培训增强危机信息提取能力

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information & Management Pub Date : 2024-11-14 DOI:10.1016/j.im.2024.104065
Yuhao Zhang, Siaw Ling Lo, Phyo Yi Win Myint
{"title":"通过可操作性事件图式和领域自适应预培训增强危机信息提取能力","authors":"Yuhao Zhang,&nbsp;Siaw Ling Lo,&nbsp;Phyo Yi Win Myint","doi":"10.1016/j.im.2024.104065","DOIUrl":null,"url":null,"abstract":"<div><div>One of the persistent challenges in crisis detection is inferring actionable information to support emergency response. Existing methods focus on situational awareness but often lack actionable insights. This study proposes a holistic approach to implementing an actionability extraction system on social media, including requirement gathering, selection of machine learning tasks, data preparation, and integration with existing resources, providing guidance for governments, civil services, emergency workers, and researchers on supplementing existing channels with actionable information from social media. Our solution leverages an actionability schema and domain-adaptive pre-training, improving upon the state-of-the-art model by 5.5 % and 10.1 % in micro and macro F1 scores.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 1","pages":"Article 104065"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empowering crisis information extraction through actionability event schemata and domain-adaptive pre-training\",\"authors\":\"Yuhao Zhang,&nbsp;Siaw Ling Lo,&nbsp;Phyo Yi Win Myint\",\"doi\":\"10.1016/j.im.2024.104065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the persistent challenges in crisis detection is inferring actionable information to support emergency response. Existing methods focus on situational awareness but often lack actionable insights. This study proposes a holistic approach to implementing an actionability extraction system on social media, including requirement gathering, selection of machine learning tasks, data preparation, and integration with existing resources, providing guidance for governments, civil services, emergency workers, and researchers on supplementing existing channels with actionable information from social media. Our solution leverages an actionability schema and domain-adaptive pre-training, improving upon the state-of-the-art model by 5.5 % and 10.1 % in micro and macro F1 scores.</div></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"62 1\",\"pages\":\"Article 104065\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720624001472\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001472","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

危机检测的一个长期挑战是推断可操作的信息,以支持应急响应。现有方法侧重于态势感知,但往往缺乏可操作的见解。本研究提出了一种在社交媒体上实施可操作性提取系统的整体方法,包括需求收集、机器学习任务选择、数据准备以及与现有资源的整合,为政府、民政部门、应急工作者和研究人员从社交媒体中获取可操作信息以补充现有渠道提供指导。我们的解决方案利用可操作性模式和领域自适应预训练,在微观和宏观 F1 分数上分别比最先进的模型提高了 5.5% 和 10.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empowering crisis information extraction through actionability event schemata and domain-adaptive pre-training
One of the persistent challenges in crisis detection is inferring actionable information to support emergency response. Existing methods focus on situational awareness but often lack actionable insights. This study proposes a holistic approach to implementing an actionability extraction system on social media, including requirement gathering, selection of machine learning tasks, data preparation, and integration with existing resources, providing guidance for governments, civil services, emergency workers, and researchers on supplementing existing channels with actionable information from social media. Our solution leverages an actionability schema and domain-adaptive pre-training, improving upon the state-of-the-art model by 5.5 % and 10.1 % in micro and macro F1 scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
期刊最新文献
Editorial Board An integrated model of ambivalence and deterrence of bystander inaction in delegitimizing doxing The nexus of mindfulness, affect, and information processing in phishing identification: An empirical examination Artificial scarcity design heuristics for digital collecting: Evidence from the non-fungible token market The dark side of crowdsourcing of complex tasks: A systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1