Yuan-Ze Tang , Xian-Cheng Zhang , Hang-Hang Gu , Kai-Shang Li , Chang-Qi Hong , Shan-Tung Tu , Yutaka S. Sato , Run-Zi Wang
{"title":"基于代用建模方法的蠕变疲劳条件下结构可靠性评估(考虑多种不确定性源","authors":"Yuan-Ze Tang , Xian-Cheng Zhang , Hang-Hang Gu , Kai-Shang Li , Chang-Qi Hong , Shan-Tung Tu , Yutaka S. Sato , Run-Zi Wang","doi":"10.1016/j.ijfatigue.2024.108728","DOIUrl":null,"url":null,"abstract":"<div><div>Creep-fatigue reliability assessment for high-temperature equipment is crucial but challenging due to the extensive data requirements and cumbersome methods. To enhance the implementation of creep-fatigue reliability assessment within engineering practice, this study employs multidimensional computational techniques grounded in the hybrid-driven paradigm. In detail, it presents a hybrid-driven creep-fatigue reliability assessment method integrating principles from mechanics, physics, and informatics and develops an integrated plug-in embedded in Abaqus software. The plug-in automates the implementation of parametric finite element analysis rooted in engineering damage mechanics, accommodating multiple uncertainty sources such as material properties, model parameters, geometry features, and applied loads. In particular, creep-fatigue reliability assessment utilizes a time-efficient alternative, facilitated by the adoption of surrogate modeling and Monte Carlo simulation. Furthermore, two typical examples from specimen-level (hole structure simulation specimen) to component-level (low-pressure turbine disk) are employed to demonstrate the availability and efficiency of the method and the plug-in. The plug-in with a hybrid-driven paradigm is poised to emerge as a powerful simulation-based engineering tool, facilitating the process of reliability assessment with enhanced convenience.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108728"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural reliability assessment under creep-fatigue considering multiple uncertainty sources based on surrogate modeling approach\",\"authors\":\"Yuan-Ze Tang , Xian-Cheng Zhang , Hang-Hang Gu , Kai-Shang Li , Chang-Qi Hong , Shan-Tung Tu , Yutaka S. Sato , Run-Zi Wang\",\"doi\":\"10.1016/j.ijfatigue.2024.108728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Creep-fatigue reliability assessment for high-temperature equipment is crucial but challenging due to the extensive data requirements and cumbersome methods. To enhance the implementation of creep-fatigue reliability assessment within engineering practice, this study employs multidimensional computational techniques grounded in the hybrid-driven paradigm. In detail, it presents a hybrid-driven creep-fatigue reliability assessment method integrating principles from mechanics, physics, and informatics and develops an integrated plug-in embedded in Abaqus software. The plug-in automates the implementation of parametric finite element analysis rooted in engineering damage mechanics, accommodating multiple uncertainty sources such as material properties, model parameters, geometry features, and applied loads. In particular, creep-fatigue reliability assessment utilizes a time-efficient alternative, facilitated by the adoption of surrogate modeling and Monte Carlo simulation. Furthermore, two typical examples from specimen-level (hole structure simulation specimen) to component-level (low-pressure turbine disk) are employed to demonstrate the availability and efficiency of the method and the plug-in. The plug-in with a hybrid-driven paradigm is poised to emerge as a powerful simulation-based engineering tool, facilitating the process of reliability assessment with enhanced convenience.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"192 \",\"pages\":\"Article 108728\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005875\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005875","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Structural reliability assessment under creep-fatigue considering multiple uncertainty sources based on surrogate modeling approach
Creep-fatigue reliability assessment for high-temperature equipment is crucial but challenging due to the extensive data requirements and cumbersome methods. To enhance the implementation of creep-fatigue reliability assessment within engineering practice, this study employs multidimensional computational techniques grounded in the hybrid-driven paradigm. In detail, it presents a hybrid-driven creep-fatigue reliability assessment method integrating principles from mechanics, physics, and informatics and develops an integrated plug-in embedded in Abaqus software. The plug-in automates the implementation of parametric finite element analysis rooted in engineering damage mechanics, accommodating multiple uncertainty sources such as material properties, model parameters, geometry features, and applied loads. In particular, creep-fatigue reliability assessment utilizes a time-efficient alternative, facilitated by the adoption of surrogate modeling and Monte Carlo simulation. Furthermore, two typical examples from specimen-level (hole structure simulation specimen) to component-level (low-pressure turbine disk) are employed to demonstrate the availability and efficiency of the method and the plug-in. The plug-in with a hybrid-driven paradigm is poised to emerge as a powerful simulation-based engineering tool, facilitating the process of reliability assessment with enhanced convenience.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.