{"title":"高含氮马氏体不锈钢增材制造的新工艺路线 - 可行性研究","authors":"L. Becker, P. König, J. Lentz, S. Weber","doi":"10.1016/j.addlet.2024.100257","DOIUrl":null,"url":null,"abstract":"<div><div>High-nitrogen martensitic stainless steels, such as X30CrMoN15 (0.3 to 0.5 mass% nitrogen), exhibit an excellent combination of strength and corrosion resistance, making them well-suited for applications in the medical technology and aerospace industry. The qualification of these steels for additive manufacturing (AM) could generate new application areas where AM, due to its process-specific advantages, could offer added value compared to conventional manufacturing methods. However, the laser powder bed fusion (PBF-LB/M) of high-nitrogen alloyed steels is challenging due to the high tendency for gas pore formation, resulting from the limited nitrogen solubility in the steel melt. In this work, a new process route for AM of a high nitrogen containing X50CrMoV15 martensitic stainless steel is presented, which consists of a process combination of powder nitriding, PBF-LB/M and subsequent hot isostatic pressing (HIP) with integrated quenching. Gas nitriding is used to achieve a nitrogen content in the starting powder that exceeds the maximum solubility in the melt. Although the nitrogen content decreases during the PBF-LB/M process, the high solidification and cooling rates prevent the melt from reaching equilibrium nitrogen levels, resulting in a nitrogen content above the solubility limit in the final PBF-LB/M state. The pores formed during the process are closed through HIP, which also allows hardening via integrated gas quenching. With an additional cryogenic treatment, the process produces a fully dense steel with 75% martensitic structure and 0.246 mass% nitrogen. Further optimization opportunities have been identified and are discussed.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"11 ","pages":"Article 100257"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new process route for the additive manufacturing of a high nitrogen containing martensitic stainless steel - A feasibility study\",\"authors\":\"L. Becker, P. König, J. Lentz, S. Weber\",\"doi\":\"10.1016/j.addlet.2024.100257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-nitrogen martensitic stainless steels, such as X30CrMoN15 (0.3 to 0.5 mass% nitrogen), exhibit an excellent combination of strength and corrosion resistance, making them well-suited for applications in the medical technology and aerospace industry. The qualification of these steels for additive manufacturing (AM) could generate new application areas where AM, due to its process-specific advantages, could offer added value compared to conventional manufacturing methods. However, the laser powder bed fusion (PBF-LB/M) of high-nitrogen alloyed steels is challenging due to the high tendency for gas pore formation, resulting from the limited nitrogen solubility in the steel melt. In this work, a new process route for AM of a high nitrogen containing X50CrMoV15 martensitic stainless steel is presented, which consists of a process combination of powder nitriding, PBF-LB/M and subsequent hot isostatic pressing (HIP) with integrated quenching. Gas nitriding is used to achieve a nitrogen content in the starting powder that exceeds the maximum solubility in the melt. Although the nitrogen content decreases during the PBF-LB/M process, the high solidification and cooling rates prevent the melt from reaching equilibrium nitrogen levels, resulting in a nitrogen content above the solubility limit in the final PBF-LB/M state. The pores formed during the process are closed through HIP, which also allows hardening via integrated gas quenching. With an additional cryogenic treatment, the process produces a fully dense steel with 75% martensitic structure and 0.246 mass% nitrogen. Further optimization opportunities have been identified and are discussed.</div></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"11 \",\"pages\":\"Article 100257\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A new process route for the additive manufacturing of a high nitrogen containing martensitic stainless steel - A feasibility study
High-nitrogen martensitic stainless steels, such as X30CrMoN15 (0.3 to 0.5 mass% nitrogen), exhibit an excellent combination of strength and corrosion resistance, making them well-suited for applications in the medical technology and aerospace industry. The qualification of these steels for additive manufacturing (AM) could generate new application areas where AM, due to its process-specific advantages, could offer added value compared to conventional manufacturing methods. However, the laser powder bed fusion (PBF-LB/M) of high-nitrogen alloyed steels is challenging due to the high tendency for gas pore formation, resulting from the limited nitrogen solubility in the steel melt. In this work, a new process route for AM of a high nitrogen containing X50CrMoV15 martensitic stainless steel is presented, which consists of a process combination of powder nitriding, PBF-LB/M and subsequent hot isostatic pressing (HIP) with integrated quenching. Gas nitriding is used to achieve a nitrogen content in the starting powder that exceeds the maximum solubility in the melt. Although the nitrogen content decreases during the PBF-LB/M process, the high solidification and cooling rates prevent the melt from reaching equilibrium nitrogen levels, resulting in a nitrogen content above the solubility limit in the final PBF-LB/M state. The pores formed during the process are closed through HIP, which also allows hardening via integrated gas quenching. With an additional cryogenic treatment, the process produces a fully dense steel with 75% martensitic structure and 0.246 mass% nitrogen. Further optimization opportunities have been identified and are discussed.