固定在漂浮基底上的有效 TiO2 基光催化剂的最新进展:微型综述

Jia-Zheng Yeoh , Swee-Yong Pung , Vel Murugan Vadivelu , Sivakumar Ramakrishnan
{"title":"固定在漂浮基底上的有效 TiO2 基光催化剂的最新进展:微型综述","authors":"Jia-Zheng Yeoh ,&nbsp;Swee-Yong Pung ,&nbsp;Vel Murugan Vadivelu ,&nbsp;Sivakumar Ramakrishnan","doi":"10.1016/j.enmm.2024.101021","DOIUrl":null,"url":null,"abstract":"<div><div>Among semiconductor-based photocatalysts, titanium dioxide (TiO<sub>2</sub>) is one of the promising materials due to its excellent photocatalytic activity, natural abundance, non-toxicity, cost-effectiveness, biocompatibility, and high stability across a wide range of pH levels. However, current TiO<sub>2</sub>-based photocatalysts are primarily available in powder form, which presents bottlenecks such as agglomeration of particles leading to inefficient photodegradation and issues in filtration and separation after wastewater treatment that can potentially cause secondary pollution. To address these challenges, the development of immobilizing TiO<sub>2</sub> on floating substrates offers a viable solution. This review article assesses the advantages of immobilizing TiO<sub>2</sub>-based photocatalysts on floating substrates, such as bentonite, polyurethane, hydrogels, and cork, to improve photocatalytic efficiency and reusability compared to conventional TiO<sub>2</sub> powder. The utilization of different lightweight materials and various immobilizing techniques used for immobilizing TiO<sub>2</sub> particles have been discussed, highlighting their impact on addressing the limitations of powder based TiO<sub>2</sub> photocatalysts and enhancing photocatalytic performance. However, limitations associated with different substrate materials and immobilization techniques, such as substrate degradation, the need for additional chemicals, and photocatalyst leaching due to improper immobilization techniques, are also discussed in this review article. Furthermore, this review article also outlines future directions for developing effective TiO<sub>2</sub>-based photocatalysts for wastewater treatment applications.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101021"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the development of effective TiO2-based photocatalysts immobilized on floating substrates: A mini review\",\"authors\":\"Jia-Zheng Yeoh ,&nbsp;Swee-Yong Pung ,&nbsp;Vel Murugan Vadivelu ,&nbsp;Sivakumar Ramakrishnan\",\"doi\":\"10.1016/j.enmm.2024.101021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Among semiconductor-based photocatalysts, titanium dioxide (TiO<sub>2</sub>) is one of the promising materials due to its excellent photocatalytic activity, natural abundance, non-toxicity, cost-effectiveness, biocompatibility, and high stability across a wide range of pH levels. However, current TiO<sub>2</sub>-based photocatalysts are primarily available in powder form, which presents bottlenecks such as agglomeration of particles leading to inefficient photodegradation and issues in filtration and separation after wastewater treatment that can potentially cause secondary pollution. To address these challenges, the development of immobilizing TiO<sub>2</sub> on floating substrates offers a viable solution. This review article assesses the advantages of immobilizing TiO<sub>2</sub>-based photocatalysts on floating substrates, such as bentonite, polyurethane, hydrogels, and cork, to improve photocatalytic efficiency and reusability compared to conventional TiO<sub>2</sub> powder. The utilization of different lightweight materials and various immobilizing techniques used for immobilizing TiO<sub>2</sub> particles have been discussed, highlighting their impact on addressing the limitations of powder based TiO<sub>2</sub> photocatalysts and enhancing photocatalytic performance. However, limitations associated with different substrate materials and immobilization techniques, such as substrate degradation, the need for additional chemicals, and photocatalyst leaching due to improper immobilization techniques, are also discussed in this review article. Furthermore, this review article also outlines future directions for developing effective TiO<sub>2</sub>-based photocatalysts for wastewater treatment applications.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"22 \",\"pages\":\"Article 101021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224001090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

在以半导体为基础的光催化剂中,二氧化钛(TiO2)因其卓越的光催化活性、天然丰富性、无毒性、成本效益、生物兼容性以及在广泛的 pH 值范围内的高稳定性,成为前景广阔的材料之一。然而,目前以二氧化钛为基础的光催化剂主要以粉末形式存在,这就带来了一些瓶颈问题,如颗粒聚集导致光降解效率低下,废水处理后的过滤和分离问题可能会造成二次污染。为了应对这些挑战,在漂浮基底上固定二氧化钛的开发提供了一种可行的解决方案。本综述文章评估了将基于 TiO2 的光催化剂固定在膨润土、聚氨酯、水凝胶和软木等漂浮基质上的优势,与传统的 TiO2 粉末相比,可提高光催化效率和重复利用率。讨论了利用不同的轻质材料和各种固定技术固定二氧化钛颗粒的问题,强调了它们对解决基于粉末的二氧化钛光催化剂的局限性和提高光催化性能的影响。不过,本综述文章也讨论了与不同基底材料和固定化技术相关的局限性,如基底降解、需要额外的化学品以及固定化技术不当导致的光催化剂沥滤。此外,这篇综述文章还概述了为废水处理应用开发有效 TiO2 基光催化剂的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in the development of effective TiO2-based photocatalysts immobilized on floating substrates: A mini review
Among semiconductor-based photocatalysts, titanium dioxide (TiO2) is one of the promising materials due to its excellent photocatalytic activity, natural abundance, non-toxicity, cost-effectiveness, biocompatibility, and high stability across a wide range of pH levels. However, current TiO2-based photocatalysts are primarily available in powder form, which presents bottlenecks such as agglomeration of particles leading to inefficient photodegradation and issues in filtration and separation after wastewater treatment that can potentially cause secondary pollution. To address these challenges, the development of immobilizing TiO2 on floating substrates offers a viable solution. This review article assesses the advantages of immobilizing TiO2-based photocatalysts on floating substrates, such as bentonite, polyurethane, hydrogels, and cork, to improve photocatalytic efficiency and reusability compared to conventional TiO2 powder. The utilization of different lightweight materials and various immobilizing techniques used for immobilizing TiO2 particles have been discussed, highlighting their impact on addressing the limitations of powder based TiO2 photocatalysts and enhancing photocatalytic performance. However, limitations associated with different substrate materials and immobilization techniques, such as substrate degradation, the need for additional chemicals, and photocatalyst leaching due to improper immobilization techniques, are also discussed in this review article. Furthermore, this review article also outlines future directions for developing effective TiO2-based photocatalysts for wastewater treatment applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
期刊最新文献
The hidden threat of microplastics in urban freshwater ecosystem: A comprehensive review The prospect of using polyvinyl chloride with -n-hydroxyl amine, a metal binding agent, to adsorb uranium from its aqueous solution Development of fly ash/melamine composites for crystal violate dye removal from aqueous media Reactive transport and sorption behavior of pollutants in presence of redox-sensitive nano Fe0 impregnated graphene: Advancing towards continuous water filtration Photocatalytic degradation of antibiotics using Cu doped-SnO2/CQDs nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1