Taihuan Hu , Shibing Zhu , Shenliang Chen , Zhaoguang Chen , Zhiqiang Li
{"title":"厄尔尼诺-南方涛动对中国南方一处内滩多尺度形态动力学的影响","authors":"Taihuan Hu , Shibing Zhu , Shenliang Chen , Zhaoguang Chen , Zhiqiang Li","doi":"10.1016/j.pce.2024.103801","DOIUrl":null,"url":null,"abstract":"<div><div>Increased coastal erosion and extreme oceanographic forcing driven by El Niño-Southern Oscillation (ENSO) along the Pacific coast are increasingly receiving concerns. Despite considerable attention, the specific impact of these phenomena on Chinese shorelines, particularly along the South China beaches, remains inadequately understood. To address this gap, this study conducted high-frequency surveys on the Qing'an Bay beach in South China and employ a profile fitting model to refined waterline extraction from monthly satellite images. The goal was to investigate the relationship between high-frequency shoreline changes and interannual climate variability (such as ENSO). The findings indicate that the coastal evolution is intricately linked to a combination of strong wave events, summer storms, winter cold waves, and the amplifying effects of ENSO. During La Niña phase, the sea level in the western Pacific experiences a rise, with associated storms proving particularly destructive to the beach environment, leading to violent oscillations in the coastline. Specifically, in the strong La Niña phases, significant wave heights markedly surpass neutral conditions, precipitating intensified sediment movement. However, it is imperative to recognize that shoreline changes alone do not fully characterize coastal erosion. Assessment must also encompass alterations in beach volume. By calculating beach volume per unit width that accounts for the influence of ENSO variability on the beach, the seasonal characteristics of the beach showed sediment losses in summer and autumn, and gains in winter and spring, which was more obvious during strong La Niña. Additionally, conceptual model analysis reveals that during the La Niña phase, the bay is fully exposed, whereas during the El Niño phase, significant headland sheltering is observed.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"137 ","pages":"Article 103801"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of El Niño-Southern oscillation on multi-scale morphodynamics of an embayed beach in southern China\",\"authors\":\"Taihuan Hu , Shibing Zhu , Shenliang Chen , Zhaoguang Chen , Zhiqiang Li\",\"doi\":\"10.1016/j.pce.2024.103801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increased coastal erosion and extreme oceanographic forcing driven by El Niño-Southern Oscillation (ENSO) along the Pacific coast are increasingly receiving concerns. Despite considerable attention, the specific impact of these phenomena on Chinese shorelines, particularly along the South China beaches, remains inadequately understood. To address this gap, this study conducted high-frequency surveys on the Qing'an Bay beach in South China and employ a profile fitting model to refined waterline extraction from monthly satellite images. The goal was to investigate the relationship between high-frequency shoreline changes and interannual climate variability (such as ENSO). The findings indicate that the coastal evolution is intricately linked to a combination of strong wave events, summer storms, winter cold waves, and the amplifying effects of ENSO. During La Niña phase, the sea level in the western Pacific experiences a rise, with associated storms proving particularly destructive to the beach environment, leading to violent oscillations in the coastline. Specifically, in the strong La Niña phases, significant wave heights markedly surpass neutral conditions, precipitating intensified sediment movement. However, it is imperative to recognize that shoreline changes alone do not fully characterize coastal erosion. Assessment must also encompass alterations in beach volume. By calculating beach volume per unit width that accounts for the influence of ENSO variability on the beach, the seasonal characteristics of the beach showed sediment losses in summer and autumn, and gains in winter and spring, which was more obvious during strong La Niña. Additionally, conceptual model analysis reveals that during the La Niña phase, the bay is fully exposed, whereas during the El Niño phase, significant headland sheltering is observed.</div></div>\",\"PeriodicalId\":54616,\"journal\":{\"name\":\"Physics and Chemistry of the Earth\",\"volume\":\"137 \",\"pages\":\"Article 103801\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474706524002596\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524002596","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Impacts of El Niño-Southern oscillation on multi-scale morphodynamics of an embayed beach in southern China
Increased coastal erosion and extreme oceanographic forcing driven by El Niño-Southern Oscillation (ENSO) along the Pacific coast are increasingly receiving concerns. Despite considerable attention, the specific impact of these phenomena on Chinese shorelines, particularly along the South China beaches, remains inadequately understood. To address this gap, this study conducted high-frequency surveys on the Qing'an Bay beach in South China and employ a profile fitting model to refined waterline extraction from monthly satellite images. The goal was to investigate the relationship between high-frequency shoreline changes and interannual climate variability (such as ENSO). The findings indicate that the coastal evolution is intricately linked to a combination of strong wave events, summer storms, winter cold waves, and the amplifying effects of ENSO. During La Niña phase, the sea level in the western Pacific experiences a rise, with associated storms proving particularly destructive to the beach environment, leading to violent oscillations in the coastline. Specifically, in the strong La Niña phases, significant wave heights markedly surpass neutral conditions, precipitating intensified sediment movement. However, it is imperative to recognize that shoreline changes alone do not fully characterize coastal erosion. Assessment must also encompass alterations in beach volume. By calculating beach volume per unit width that accounts for the influence of ENSO variability on the beach, the seasonal characteristics of the beach showed sediment losses in summer and autumn, and gains in winter and spring, which was more obvious during strong La Niña. Additionally, conceptual model analysis reveals that during the La Niña phase, the bay is fully exposed, whereas during the El Niño phase, significant headland sheltering is observed.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).