桦木锯屑基碳结构的铁基催化改性:利用实验设计分析工艺参数对最终产品的影响

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-11-17 DOI:10.1016/j.cartre.2024.100428
Henna Lempiäinen , Davide Bergna , Anne Heponiemi , Tao Hu , Glaydson S. dos Reis , Rafal Sliz , Ulla Lassi
{"title":"桦木锯屑基碳结构的铁基催化改性:利用实验设计分析工艺参数对最终产品的影响","authors":"Henna Lempiäinen ,&nbsp;Davide Bergna ,&nbsp;Anne Heponiemi ,&nbsp;Tao Hu ,&nbsp;Glaydson S. dos Reis ,&nbsp;Rafal Sliz ,&nbsp;Ulla Lassi","doi":"10.1016/j.cartre.2024.100428","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass waste-based, graphite-like material is an interesting alternative to fossil carbons in, for example, battery solutions. The aim was to produce carbon with a graphite-like structure from birch waste through catalytic modification with iron nitrate at relatively low temperatures. The study highlighted the effects of the Fe/birch mass ratio (0–20 mg Fe/g birch), heating temperature (750–900 °C), holding time (1–6 h), and heating rate (3–10 °C/min) on the carbon. The influence of each factor was demonstrated using a design of experiments (DoE) approach. Changes in yield, chemical composition, morphology, specific surface area, total pore volume, pore size distribution, particle size, tapped density, and conductivity were analyzed. The results showed that temperature affected the chemical content, yield, and conductivity. Iron-impregnation affected the structure of birch by modifying its total pore volume, tapped density, I<sub>D</sub>/I<sub>G</sub> value, and conductivity. The heating rate and holding time had relatively little effect. The highest conductivity (7.23 S/cm) was obtained when impregnated birch was pyrolyzed at the maximum temperature, holding time, and heating rate. However, the best graphitization result (I<sub>D</sub>/I<sub>G</sub> 0.98) was obtained when iron-impregnated birch was heated for 6 h at 750 °C at a heating rate of 3 °C/min.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100428"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-based catalytic modification of a birch sawdust-based carbon structure: The effect of process parameters on the final product using an experimental design\",\"authors\":\"Henna Lempiäinen ,&nbsp;Davide Bergna ,&nbsp;Anne Heponiemi ,&nbsp;Tao Hu ,&nbsp;Glaydson S. dos Reis ,&nbsp;Rafal Sliz ,&nbsp;Ulla Lassi\",\"doi\":\"10.1016/j.cartre.2024.100428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomass waste-based, graphite-like material is an interesting alternative to fossil carbons in, for example, battery solutions. The aim was to produce carbon with a graphite-like structure from birch waste through catalytic modification with iron nitrate at relatively low temperatures. The study highlighted the effects of the Fe/birch mass ratio (0–20 mg Fe/g birch), heating temperature (750–900 °C), holding time (1–6 h), and heating rate (3–10 °C/min) on the carbon. The influence of each factor was demonstrated using a design of experiments (DoE) approach. Changes in yield, chemical composition, morphology, specific surface area, total pore volume, pore size distribution, particle size, tapped density, and conductivity were analyzed. The results showed that temperature affected the chemical content, yield, and conductivity. Iron-impregnation affected the structure of birch by modifying its total pore volume, tapped density, I<sub>D</sub>/I<sub>G</sub> value, and conductivity. The heating rate and holding time had relatively little effect. The highest conductivity (7.23 S/cm) was obtained when impregnated birch was pyrolyzed at the maximum temperature, holding time, and heating rate. However, the best graphitization result (I<sub>D</sub>/I<sub>G</sub> 0.98) was obtained when iron-impregnated birch was heated for 6 h at 750 °C at a heating rate of 3 °C/min.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"17 \",\"pages\":\"Article 100428\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924001081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924001081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以生物质废物为基础的类石墨材料是化石碳的一种有趣的替代品,例如在电池解决方案中。研究的目的是在相对较低的温度下,通过硝酸铁催化改性,从桦树废料中生产出具有类石墨结构的碳。该研究强调了铁/桦木质量比(0-20 毫克铁/克桦木)、加热温度(750-900 °C)、保温时间(1-6 小时)和加热速度(3-10 °C/分钟)对碳的影响。实验设计(DoE)方法证明了各因素的影响。分析了产量、化学成分、形态、比表面积、总孔体积、孔径分布、粒度、敲击密度和电导率的变化。结果表明,温度会影响化学成分、产量和导电率。铁浸渍通过改变桦木的总孔隙率、敲击密度、ID/IG 值和导电率来影响其结构。加热速率和保温时间的影响相对较小。在最高温度、保温时间和加热速率下热解浸渍过的桦木时,电导率最高(7.23 S/cm)。然而,当铁浸渍桦木在 750 °C 下以 3 °C/min 的加热速率加热 6 小时时,获得了最佳的石墨化效果(ID/IG 0.98)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe-based catalytic modification of a birch sawdust-based carbon structure: The effect of process parameters on the final product using an experimental design
Biomass waste-based, graphite-like material is an interesting alternative to fossil carbons in, for example, battery solutions. The aim was to produce carbon with a graphite-like structure from birch waste through catalytic modification with iron nitrate at relatively low temperatures. The study highlighted the effects of the Fe/birch mass ratio (0–20 mg Fe/g birch), heating temperature (750–900 °C), holding time (1–6 h), and heating rate (3–10 °C/min) on the carbon. The influence of each factor was demonstrated using a design of experiments (DoE) approach. Changes in yield, chemical composition, morphology, specific surface area, total pore volume, pore size distribution, particle size, tapped density, and conductivity were analyzed. The results showed that temperature affected the chemical content, yield, and conductivity. Iron-impregnation affected the structure of birch by modifying its total pore volume, tapped density, ID/IG value, and conductivity. The heating rate and holding time had relatively little effect. The highest conductivity (7.23 S/cm) was obtained when impregnated birch was pyrolyzed at the maximum temperature, holding time, and heating rate. However, the best graphitization result (ID/IG 0.98) was obtained when iron-impregnated birch was heated for 6 h at 750 °C at a heating rate of 3 °C/min.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Mechanistic insight into the catalytic activities of metallic sites on nitrogen-doped graphene quantum dots for CO2 hydrogenation Fe-based catalytic modification of a birch sawdust-based carbon structure: The effect of process parameters on the final product using an experimental design Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods Eco and user–friendly curcumin based nanocomposite forensic powder from coal fly ash for latent fingerprint detection in crime scenes Reduced thermal conductivity of constricted graphene nanoribbons for thermoelectric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1