通过动态触发策略实现时变网络物理系统的优化控制

Yuanshan Liu, Yude Xia
{"title":"通过动态触发策略实现时变网络物理系统的优化控制","authors":"Yuanshan Liu,&nbsp;Yude Xia","doi":"10.1016/j.rico.2024.100497","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100497"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization control of time-varying cyber–physical systems via dynamic-triggered strategies\",\"authors\":\"Yuanshan Liu,&nbsp;Yude Xia\",\"doi\":\"10.1016/j.rico.2024.100497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"17 \",\"pages\":\"Article 100497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724001279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新方法,用于为具有未知动态的时变网络物理系统(CPS)设计控制策略,无需进行系统识别。结合动态触发策略 (DTS),闭环系统可使用矩阵进行参数化,这些矩阵取决于从离线收集的输入状态轨迹集合中获得的数据。此外,通过利用经典的线性二次调节器(LQR)技术,数据驱动的优化控制问题得到了很好的解决,从而避免了本文提出的 CPS 特定数学模型的必要性,展示了一种显著的创新。本文提供了一个数值示例来说明这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization control of time-varying cyber–physical systems via dynamic-triggered strategies
A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
A novel approach in controlling the spread of a rumor within a crowd A comparison study on optical character recognition models in mathematical equations and in any language Multiple sclerosis diagnosis with brain MRI retrieval: A deep learning approach Integral invariant manifold method applied to a mathematical model of osteosarcoma Evaluating consumers benefits in electronic-commerce using fuzzy TOPSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1