通过动态触发策略实现时变网络物理系统的优化控制

Yuanshan Liu, Yude Xia
{"title":"通过动态触发策略实现时变网络物理系统的优化控制","authors":"Yuanshan Liu,&nbsp;Yude Xia","doi":"10.1016/j.rico.2024.100497","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100497"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization control of time-varying cyber–physical systems via dynamic-triggered strategies\",\"authors\":\"Yuanshan Liu,&nbsp;Yude Xia\",\"doi\":\"10.1016/j.rico.2024.100497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"17 \",\"pages\":\"Article 100497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724001279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新方法,用于为具有未知动态的时变网络物理系统(CPS)设计控制策略,无需进行系统识别。结合动态触发策略 (DTS),闭环系统可使用矩阵进行参数化,这些矩阵取决于从离线收集的输入状态轨迹集合中获得的数据。此外,通过利用经典的线性二次调节器(LQR)技术,数据驱动的优化控制问题得到了很好的解决,从而避免了本文提出的 CPS 特定数学模型的必要性,展示了一种显著的创新。本文提供了一个数值示例来说明这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization control of time-varying cyber–physical systems via dynamic-triggered strategies
A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
A note on “Study on multi-objective linear fractional programming problem involving pentagonal intuitionistic fuzzy number” Frequency regulation of two-area thermal and photovoltaic power system via flood algorithm An efficient parametric kernel function of IPMs for Linear optimization problems Multi-objective optimization of an open-pit mining system to determine safety buffer using the modified NBI method and the meta-model approach COVID-19 detection from optimized features of breathing audio signals using explainable ensemble machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1