高温超临界二氧化碳环境下铁素体/马氏体和奥氏体钢的机械降解研究

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-11-15 DOI:10.1016/j.matdes.2024.113455
Gen Zhang , Yan-Ping Huang , Tao Yang , Yong-Fu Zhao , Min-yun Liu , Wei-Wei Liu , Hong Yang , Yao-Lin Zhao , Shao-Wei Nie
{"title":"高温超临界二氧化碳环境下铁素体/马氏体和奥氏体钢的机械降解研究","authors":"Gen Zhang ,&nbsp;Yan-Ping Huang ,&nbsp;Tao Yang ,&nbsp;Yong-Fu Zhao ,&nbsp;Min-yun Liu ,&nbsp;Wei-Wei Liu ,&nbsp;Hong Yang ,&nbsp;Yao-Lin Zhao ,&nbsp;Shao-Wei Nie","doi":"10.1016/j.matdes.2024.113455","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical degradation mechanism of T91 ferrite/martensite steel at 500 °C and 316NG austenitic steel at both 500 °C and 600 °C in supercritical carbon dioxide were investigated in detail by slow strain rate tensile tests and first-principles calculations of the adsorption and dissociation of CO<sub>2</sub>. In high-temperature CO<sub>2</sub> atmosphere, CO<sub>2</sub> could spontaneously dissociate into CO and O, and the spontaneously and partially dissociated O atoms exhibited a strong interaction with Cr. As the temperature was increased to 600 °C, the partial dissociation of CO<sub>2</sub> occurred more rapidly and the ultimate tensile strength and total elongation of 316NG steel decreased significantly as well. Furthermore, a composite failure mode with intergranular brittle fracture and ductile fracture was investigated.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113455"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on mechanical degradation of Ferrite/ martensite and austenitic steels in high-temperature supercritical carbon dioxide environment\",\"authors\":\"Gen Zhang ,&nbsp;Yan-Ping Huang ,&nbsp;Tao Yang ,&nbsp;Yong-Fu Zhao ,&nbsp;Min-yun Liu ,&nbsp;Wei-Wei Liu ,&nbsp;Hong Yang ,&nbsp;Yao-Lin Zhao ,&nbsp;Shao-Wei Nie\",\"doi\":\"10.1016/j.matdes.2024.113455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical degradation mechanism of T91 ferrite/martensite steel at 500 °C and 316NG austenitic steel at both 500 °C and 600 °C in supercritical carbon dioxide were investigated in detail by slow strain rate tensile tests and first-principles calculations of the adsorption and dissociation of CO<sub>2</sub>. In high-temperature CO<sub>2</sub> atmosphere, CO<sub>2</sub> could spontaneously dissociate into CO and O, and the spontaneously and partially dissociated O atoms exhibited a strong interaction with Cr. As the temperature was increased to 600 °C, the partial dissociation of CO<sub>2</sub> occurred more rapidly and the ultimate tensile strength and total elongation of 316NG steel decreased significantly as well. Furthermore, a composite failure mode with intergranular brittle fracture and ductile fracture was investigated.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"248 \",\"pages\":\"Article 113455\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026412752400830X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026412752400830X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过慢应变速率拉伸试验和二氧化碳吸附与解离的第一性原理计算,详细研究了 T91 铁素体/马氏体钢在 500 ℃ 和 316NG 奥氏体钢在 500 ℃ 和 600 ℃ 超临界二氧化碳中的机械降解机理。在高温 CO2 大气中,CO2 可自发解离为 CO 和 O,自发解离和部分解离的 O 原子与 Cr 具有很强的相互作用。当温度升高到 600 ℃ 时,CO2 的部分离解发生得更快,316NG 钢的极限抗拉强度和总伸长率也显著下降。此外,还研究了晶间脆性断裂和韧性断裂的复合失效模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on mechanical degradation of Ferrite/ martensite and austenitic steels in high-temperature supercritical carbon dioxide environment
The mechanical degradation mechanism of T91 ferrite/martensite steel at 500 °C and 316NG austenitic steel at both 500 °C and 600 °C in supercritical carbon dioxide were investigated in detail by slow strain rate tensile tests and first-principles calculations of the adsorption and dissociation of CO2. In high-temperature CO2 atmosphere, CO2 could spontaneously dissociate into CO and O, and the spontaneously and partially dissociated O atoms exhibited a strong interaction with Cr. As the temperature was increased to 600 °C, the partial dissociation of CO2 occurred more rapidly and the ultimate tensile strength and total elongation of 316NG steel decreased significantly as well. Furthermore, a composite failure mode with intergranular brittle fracture and ductile fracture was investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Extreme high accuracy prediction and design of Fe-C-Cr-Mn-Si steel using machine learning Microstructure and kinetic evolutions of multi-variants lamella in γ-TiAl alloys Temperature-dependent mechanical behavior in a novel hierarchical B2-strengthened high entropy alloy: Microscopic deformation mechanism and yield strength prediction In-situ fabrication of Ti-TiCx metal matrix composite by laser powder bed fusion with enhanced elastic modulus and superior ductility Establishing room-temperature multiferroic behaviour in bismuth-based perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1