低碳富镁、富钙废粉土工聚合物浆料的力学性能和水化研究

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2024-11-25 DOI:10.1016/j.jcou.2024.102984
Changming Li , Xudong Yang , Dongyang Jia , Shunbo Zhao , Guanfeng Liu , Yaozong Wang , Wanjiao Li , Wenyu Song
{"title":"低碳富镁、富钙废粉土工聚合物浆料的力学性能和水化研究","authors":"Changming Li ,&nbsp;Xudong Yang ,&nbsp;Dongyang Jia ,&nbsp;Shunbo Zhao ,&nbsp;Guanfeng Liu ,&nbsp;Yaozong Wang ,&nbsp;Wanjiao Li ,&nbsp;Wenyu Song","doi":"10.1016/j.jcou.2024.102984","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium and calcium-rich waste powder (MWP) has the potential to be a low-carbon geopolymer cementitious material. This study investigates the mechanical properties and hydration products of low-carbon magnesium and calcium-rich waste powder geopolymer paste (LMWP). The influences of alkali content, calcination temperature, mix proportions of raw materials and curing temperature on the compressive strength and hydration of LMWP were examined. The mechanical properties of LMWP were systematically evaluated by assessing setting time, fluidity, and compressive strength, while the pore structure was analyzed using mercury intrusion porosimetry (MIP). The hydration products and microstructures of LMWP were investigated by XRD, TG-DTG, and SEM-EDS. The results indicated that incorporating 1 % NaOH significantly enhanced the compressive strength of LMWP, whereas thermally activated MWP (800 ℃, 900 ℃) negatively affected compressive strength development. The addition of slag facilitated the reaction of MWP and improved the compressive strength of LMWP. When the slag incorporation reached 40 %, the specimen demonstrated optimal performance with a compressive strength of 27.8 MPa. The pore diameter was predominantly distributed around 10 nm, indicating well-structured porosity. Microstructural analysis revealed that the hydration products are dense calcium magnesium silicate gels (C-M-S-H), which significantly enhanced the compressive strength and optimized pore structure of LMWP. The efficiency of carbon emission reduction achieved by LMWP was evaluated. The findings indicate that, compared to traditional cement-based materials, LMWP reduces cement consumption by over 60 %, significantly decreasing CO<sub>2</sub> emissions. This study innovatively utilizes MWP to prepare green and low-carbon geopolymer paste materials, with the aim of replacing cement applications in the construction industry, thereby reducing carbon emissions. It explores new avenues for the low-carbon and green development of the civil engineering sector and contributes to efforts in addressing the global climate crisis.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"90 ","pages":"Article 102984"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of mechanical properties and hydration of low-carbon magnesium and calcium-rich waste powder geopolymer paste\",\"authors\":\"Changming Li ,&nbsp;Xudong Yang ,&nbsp;Dongyang Jia ,&nbsp;Shunbo Zhao ,&nbsp;Guanfeng Liu ,&nbsp;Yaozong Wang ,&nbsp;Wanjiao Li ,&nbsp;Wenyu Song\",\"doi\":\"10.1016/j.jcou.2024.102984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnesium and calcium-rich waste powder (MWP) has the potential to be a low-carbon geopolymer cementitious material. This study investigates the mechanical properties and hydration products of low-carbon magnesium and calcium-rich waste powder geopolymer paste (LMWP). The influences of alkali content, calcination temperature, mix proportions of raw materials and curing temperature on the compressive strength and hydration of LMWP were examined. The mechanical properties of LMWP were systematically evaluated by assessing setting time, fluidity, and compressive strength, while the pore structure was analyzed using mercury intrusion porosimetry (MIP). The hydration products and microstructures of LMWP were investigated by XRD, TG-DTG, and SEM-EDS. The results indicated that incorporating 1 % NaOH significantly enhanced the compressive strength of LMWP, whereas thermally activated MWP (800 ℃, 900 ℃) negatively affected compressive strength development. The addition of slag facilitated the reaction of MWP and improved the compressive strength of LMWP. When the slag incorporation reached 40 %, the specimen demonstrated optimal performance with a compressive strength of 27.8 MPa. The pore diameter was predominantly distributed around 10 nm, indicating well-structured porosity. Microstructural analysis revealed that the hydration products are dense calcium magnesium silicate gels (C-M-S-H), which significantly enhanced the compressive strength and optimized pore structure of LMWP. The efficiency of carbon emission reduction achieved by LMWP was evaluated. The findings indicate that, compared to traditional cement-based materials, LMWP reduces cement consumption by over 60 %, significantly decreasing CO<sub>2</sub> emissions. This study innovatively utilizes MWP to prepare green and low-carbon geopolymer paste materials, with the aim of replacing cement applications in the construction industry, thereby reducing carbon emissions. It explores new avenues for the low-carbon and green development of the civil engineering sector and contributes to efforts in addressing the global climate crisis.</div></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"90 \",\"pages\":\"Article 102984\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024003196\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024003196","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富镁和富钙废粉(MWP)具有成为低碳土工聚合物胶凝材料的潜力。本研究探讨了低碳富镁、富钙废粉土工聚合物浆料(LMWP)的力学性能和水化产物。研究了碱含量、煅烧温度、原材料混合比例和固化温度对 LMWP 抗压强度和水化产物的影响。通过评估凝结时间、流动性和抗压强度,对 LMWP 的机械性能进行了系统评价,同时使用汞侵入孔隙模拟法(MIP)分析了孔隙结构。通过 XRD、TG-DTG 和 SEM-EDS 研究了 LMWP 的水化产物和微观结构。结果表明,加入 1 % 的 NaOH 能显著提高 LMWP 的抗压强度,而热活化 MWP(800 ℃、900 ℃)会对抗压强度的发展产生负面影响。炉渣的加入促进了 MWP 的反应,提高了 LMWP 的抗压强度。当矿渣掺量达到 40% 时,试样表现出最佳性能,抗压强度达到 27.8 兆帕。孔隙直径主要分布在 10 nm 左右,表明孔隙结构良好。微观结构分析表明,水化产物是致密的硅酸钙镁凝胶(C-M-S-H),它显著提高了 LMWP 的抗压强度,优化了孔隙结构。对 LMWP 实现的碳减排效率进行了评估。研究结果表明,与传统的水泥基材料相比,LMWP 可减少 60% 以上的水泥用量,大大减少了二氧化碳排放量。本研究创新性地利用 MWP 制备绿色低碳的土工聚合物浆料材料,旨在取代水泥在建筑行业的应用,从而减少碳排放。它为土木工程领域的低碳和绿色发展探索了新途径,并为应对全球气候危机做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of mechanical properties and hydration of low-carbon magnesium and calcium-rich waste powder geopolymer paste
Magnesium and calcium-rich waste powder (MWP) has the potential to be a low-carbon geopolymer cementitious material. This study investigates the mechanical properties and hydration products of low-carbon magnesium and calcium-rich waste powder geopolymer paste (LMWP). The influences of alkali content, calcination temperature, mix proportions of raw materials and curing temperature on the compressive strength and hydration of LMWP were examined. The mechanical properties of LMWP were systematically evaluated by assessing setting time, fluidity, and compressive strength, while the pore structure was analyzed using mercury intrusion porosimetry (MIP). The hydration products and microstructures of LMWP were investigated by XRD, TG-DTG, and SEM-EDS. The results indicated that incorporating 1 % NaOH significantly enhanced the compressive strength of LMWP, whereas thermally activated MWP (800 ℃, 900 ℃) negatively affected compressive strength development. The addition of slag facilitated the reaction of MWP and improved the compressive strength of LMWP. When the slag incorporation reached 40 %, the specimen demonstrated optimal performance with a compressive strength of 27.8 MPa. The pore diameter was predominantly distributed around 10 nm, indicating well-structured porosity. Microstructural analysis revealed that the hydration products are dense calcium magnesium silicate gels (C-M-S-H), which significantly enhanced the compressive strength and optimized pore structure of LMWP. The efficiency of carbon emission reduction achieved by LMWP was evaluated. The findings indicate that, compared to traditional cement-based materials, LMWP reduces cement consumption by over 60 %, significantly decreasing CO2 emissions. This study innovatively utilizes MWP to prepare green and low-carbon geopolymer paste materials, with the aim of replacing cement applications in the construction industry, thereby reducing carbon emissions. It explores new avenues for the low-carbon and green development of the civil engineering sector and contributes to efforts in addressing the global climate crisis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Investigation of mechanical properties and hydration of low-carbon magnesium and calcium-rich waste powder geopolymer paste Comparison of the efficacy of carbonation and conventional curing for remediation of copper-contaminated soils by ladle slag Fibrous phosphosilicate with highly dispersed poly(ionic liquids) as a nanocatalyst for production of biopolymer from limonene epoxide and CO2 Unraveling the role of EPOC during the enhancement of RWGS reaction in a Pt/YSZ/Au single chamber reactor Formation of bio-based cyclic carbonates from CO2 and renewable feedstocks via porous poly(azomethine) -based heterogeneous catalysts approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1