作为可分离和可回收光催化剂的 TiO2/NiFe2-xCexO4/rGO 三元磁性纳米复合材料

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2024-11-20 DOI:10.1016/j.inoche.2024.113603
Fatemeh Sadat Seyed Atashi, Felora Heshmatpour
{"title":"作为可分离和可回收光催化剂的 TiO2/NiFe2-xCexO4/rGO 三元磁性纳米复合材料","authors":"Fatemeh Sadat Seyed Atashi,&nbsp;Felora Heshmatpour","doi":"10.1016/j.inoche.2024.113603","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the synthesis and application of a TiO<sub>2</sub>/NiFe<sub>2-x</sub>Ce<sub>x</sub>O<sub>4</sub>/rGO ternary magnetic nanocomposite as an efficient and recyclable photocatalyst. The nanocomposite was characterized using Fourier-transform infrared(FTIR), X-ray diffraction(XRD), Field emission scanning electron microscopy(FE-SEM), magnetic measurements, UV–Vis diffuse reflectance spectroscopy(DRS), and X-ray photoelectron spectroscopy (XPS). FTIR analysis confirmed the formation of the inverse spinel cubic structure, with significant vibrational bands related to metal–oxygen complexes. XRD patterns showed successful incorporation of Ce<sup>3+</sup> ions into the NiFe<sub>2</sub>O<sub>4</sub> lattice, with shifts in diffraction peaks indicating changes in crystallite size and lattice parameters. FE-SEM images revealed a well-dispersed distribution of TiO<sub>2</sub> and NiFe<sub>2</sub>O<sub>4</sub> nanoparticles on the reduced graphene oxide (rGO) surface, enhancing the nanocomposite’s structural integrity. Energy dispersive X-ray(EDX) analysis demonstrated the presence of Ti, Ni, Fe, Ce, O, and C elements in the ternary nanocomposite without impurities, confirming the high purity of the material. Magnetic measurements indicated increased magnetization due to Ce<sup>3+</sup> doping. DRS revealed optical band gaps (Bg), and XPS provided detailed insights into the surface chemical composition and valence states. XPS analysis confirmed the presence of Ni<sup>2+</sup>, Fe<sup>3+</sup>, Ti<sup>4+</sup>, and Ce<sup>3+</sup> ions, and verified the reduction of graphene oxide to rGO. Importantly, the XPS data also indicated a reduction in the binding energy of oxygen species, which suggests effective electron trapping. The photocatalytic performance was assessed by the degradation of methylene blue (MB) under UV and Vis light. The TiO<sub>2</sub>/NiFe<sub>2-x</sub>Ce<sub>x</sub>O<sub>4</sub>/rGO nanocomposite demonstrated superior photocatalytic activity with high degradation rates. The enhanced photocatalytic efficiency is attributed to efficient electron trapping, which reduces electron-hole recombination. Furthermore, the nanocomposite showed excellent reusability, maintaining high photocatalytic efficiency over multiple cycles of use, which underscores its potential for practical applications in environmental remediation.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113603"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TiO2/NiFe2-xCexO4/rGO ternary magnetic nanocomposite as separable and recyclable photocatalyst\",\"authors\":\"Fatemeh Sadat Seyed Atashi,&nbsp;Felora Heshmatpour\",\"doi\":\"10.1016/j.inoche.2024.113603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the synthesis and application of a TiO<sub>2</sub>/NiFe<sub>2-x</sub>Ce<sub>x</sub>O<sub>4</sub>/rGO ternary magnetic nanocomposite as an efficient and recyclable photocatalyst. The nanocomposite was characterized using Fourier-transform infrared(FTIR), X-ray diffraction(XRD), Field emission scanning electron microscopy(FE-SEM), magnetic measurements, UV–Vis diffuse reflectance spectroscopy(DRS), and X-ray photoelectron spectroscopy (XPS). FTIR analysis confirmed the formation of the inverse spinel cubic structure, with significant vibrational bands related to metal–oxygen complexes. XRD patterns showed successful incorporation of Ce<sup>3+</sup> ions into the NiFe<sub>2</sub>O<sub>4</sub> lattice, with shifts in diffraction peaks indicating changes in crystallite size and lattice parameters. FE-SEM images revealed a well-dispersed distribution of TiO<sub>2</sub> and NiFe<sub>2</sub>O<sub>4</sub> nanoparticles on the reduced graphene oxide (rGO) surface, enhancing the nanocomposite’s structural integrity. Energy dispersive X-ray(EDX) analysis demonstrated the presence of Ti, Ni, Fe, Ce, O, and C elements in the ternary nanocomposite without impurities, confirming the high purity of the material. Magnetic measurements indicated increased magnetization due to Ce<sup>3+</sup> doping. DRS revealed optical band gaps (Bg), and XPS provided detailed insights into the surface chemical composition and valence states. XPS analysis confirmed the presence of Ni<sup>2+</sup>, Fe<sup>3+</sup>, Ti<sup>4+</sup>, and Ce<sup>3+</sup> ions, and verified the reduction of graphene oxide to rGO. Importantly, the XPS data also indicated a reduction in the binding energy of oxygen species, which suggests effective electron trapping. The photocatalytic performance was assessed by the degradation of methylene blue (MB) under UV and Vis light. The TiO<sub>2</sub>/NiFe<sub>2-x</sub>Ce<sub>x</sub>O<sub>4</sub>/rGO nanocomposite demonstrated superior photocatalytic activity with high degradation rates. The enhanced photocatalytic efficiency is attributed to efficient electron trapping, which reduces electron-hole recombination. Furthermore, the nanocomposite showed excellent reusability, maintaining high photocatalytic efficiency over multiple cycles of use, which underscores its potential for practical applications in environmental remediation.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"171 \",\"pages\":\"Article 113603\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700324015934\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015934","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了作为高效可回收光催化剂的 TiO2/NiFe2-xCexO4/rGO 三元磁性纳米复合材料的合成和应用。研究采用傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、磁性测量、紫外可见漫反射光谱(DRS)和 X 射线光电子能谱(XPS)对该纳米复合材料进行了表征。傅立叶变换红外光谱分析证实了反尖晶石立方结构的形成,并带有与金属氧络合物相关的重要振带。XRD 图谱显示,Ce3+ 离子成功地融入了 NiFe2O4 晶格,衍射峰的移动表明晶粒尺寸和晶格参数发生了变化。FE-SEM 图像显示 TiO2 和 NiFe2O4 纳米粒子在还原氧化石墨烯(rGO)表面分布均匀,增强了纳米复合材料的结构完整性。能量色散 X 射线(EDX)分析表明,三元纳米复合材料中不含杂质,含有 Ti、Ni、Fe、Ce、O 和 C 元素,证实了材料的高纯度。磁性测量结果表明,由于掺杂了 Ce3+,磁化率有所提高。DRS 揭示了光带隙(Bg),而 XPS 则详细揭示了表面化学成分和价态。XPS 分析证实了 Ni2+、Fe3+、Ti4+ 和 Ce3+ 离子的存在,并验证了氧化石墨烯还原成 rGO 的过程。重要的是,XPS 数据还表明氧物种的结合能降低了,这表明电子捕获有效。光催化性能通过亚甲基蓝(MB)在紫外光和可见光下的降解进行了评估。TiO2/NiFe2-xCexO4/rGO 纳米复合材料表现出卓越的光催化活性和较高的降解率。光催化效率的提高归功于高效的电子捕获,从而减少了电子-空穴重组。此外,该纳米复合材料显示出极佳的可重复使用性,在多次循环使用后仍能保持较高的光催化效率,这凸显了其在环境修复领域的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiO2/NiFe2-xCexO4/rGO ternary magnetic nanocomposite as separable and recyclable photocatalyst
This study investigates the synthesis and application of a TiO2/NiFe2-xCexO4/rGO ternary magnetic nanocomposite as an efficient and recyclable photocatalyst. The nanocomposite was characterized using Fourier-transform infrared(FTIR), X-ray diffraction(XRD), Field emission scanning electron microscopy(FE-SEM), magnetic measurements, UV–Vis diffuse reflectance spectroscopy(DRS), and X-ray photoelectron spectroscopy (XPS). FTIR analysis confirmed the formation of the inverse spinel cubic structure, with significant vibrational bands related to metal–oxygen complexes. XRD patterns showed successful incorporation of Ce3+ ions into the NiFe2O4 lattice, with shifts in diffraction peaks indicating changes in crystallite size and lattice parameters. FE-SEM images revealed a well-dispersed distribution of TiO2 and NiFe2O4 nanoparticles on the reduced graphene oxide (rGO) surface, enhancing the nanocomposite’s structural integrity. Energy dispersive X-ray(EDX) analysis demonstrated the presence of Ti, Ni, Fe, Ce, O, and C elements in the ternary nanocomposite without impurities, confirming the high purity of the material. Magnetic measurements indicated increased magnetization due to Ce3+ doping. DRS revealed optical band gaps (Bg), and XPS provided detailed insights into the surface chemical composition and valence states. XPS analysis confirmed the presence of Ni2+, Fe3+, Ti4+, and Ce3+ ions, and verified the reduction of graphene oxide to rGO. Importantly, the XPS data also indicated a reduction in the binding energy of oxygen species, which suggests effective electron trapping. The photocatalytic performance was assessed by the degradation of methylene blue (MB) under UV and Vis light. The TiO2/NiFe2-xCexO4/rGO nanocomposite demonstrated superior photocatalytic activity with high degradation rates. The enhanced photocatalytic efficiency is attributed to efficient electron trapping, which reduces electron-hole recombination. Furthermore, the nanocomposite showed excellent reusability, maintaining high photocatalytic efficiency over multiple cycles of use, which underscores its potential for practical applications in environmental remediation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
Exploring chemical, physical, and biosynthesis methods for ZnO/SiO2: Synthesis strategies and applications Development of starch/whey protein isolate biofilm incorporated with silver oxide nanoparticles: A multifunctional antioxidant, antibacterial, photocatalytic, and anticancer agent Synthesis of green emissive Plectranthus scutellarioides carbon dots for sustainable and label-free detection of phytohormone indole-3-acetic acid Editorial Board Recent advances in biotechnology applications of bacteriocin-selenium nanoconjugates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1