{"title":"利用有机朗肯循环、质子交换膜电解槽和混合制冷剂氢液化循环将废热储存为液氢的系统","authors":"Abolfazl Nikzad, Mostafa Mafi, Saman Faramarzi","doi":"10.1002/est2.70064","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study proposes a system to store waste heat as liquid hydrogen using a proton exchange membrane electrolyzer (PEME) and a mixed refrigerant hydrogen liquefaction cycle. The novelty of this study lies in proposing a waste heat recovery system that stores electricity as liquid hydrogen, consuming less power due to the improved exergy efficiency of the components. The proposed system is analyzed to achieve better efficiency in terms of thermal and exergy efficiencies. Waste heat is used to generate power by an organic Rankin cycle (ORC), produced electricity is utilized in the PEME unit and compressors of liquefaction cycle to produce and liquefy hydrogen, respectively. Codes are written in EES software to simulate the system. Thermodynamic analysis is done in order to achieve better thermal efficiency for the proposed model. Membrane potential at different values of current density is calculated and compared with validate the simulated model. The exergy efficiency of the liquid hydrogen production process is 57%. The exergy efficiency, rate of power produced in ORC, and rate of hydrogen production by the electrolyzer increase significantly by increasing the isentropic efficiency of the turbine. At a temperature of 340 K for the evaporator, the thermal efficiency of ORC is obtained at 8.5%, which is approximately 3% higher compared with that of the previous similar process.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle\",\"authors\":\"Abolfazl Nikzad, Mostafa Mafi, Saman Faramarzi\",\"doi\":\"10.1002/est2.70064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study proposes a system to store waste heat as liquid hydrogen using a proton exchange membrane electrolyzer (PEME) and a mixed refrigerant hydrogen liquefaction cycle. The novelty of this study lies in proposing a waste heat recovery system that stores electricity as liquid hydrogen, consuming less power due to the improved exergy efficiency of the components. The proposed system is analyzed to achieve better efficiency in terms of thermal and exergy efficiencies. Waste heat is used to generate power by an organic Rankin cycle (ORC), produced electricity is utilized in the PEME unit and compressors of liquefaction cycle to produce and liquefy hydrogen, respectively. Codes are written in EES software to simulate the system. Thermodynamic analysis is done in order to achieve better thermal efficiency for the proposed model. Membrane potential at different values of current density is calculated and compared with validate the simulated model. The exergy efficiency of the liquid hydrogen production process is 57%. The exergy efficiency, rate of power produced in ORC, and rate of hydrogen production by the electrolyzer increase significantly by increasing the isentropic efficiency of the turbine. At a temperature of 340 K for the evaporator, the thermal efficiency of ORC is obtained at 8.5%, which is approximately 3% higher compared with that of the previous similar process.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种利用质子交换膜电解槽(PEME)和混合制冷剂氢液化循环将废热储存为液氢的系统。本研究的新颖之处在于提出了一种废热回收系统,该系统可将电能储存为液态氢,由于提高了各组件的放能效率,因此消耗的电能更少。通过分析所提出的系统,可以在热效率和放能效率方面实现更高的效率。废热通过有机朗肯循环(ORC)产生电能,产生的电能分别用于 PEME 装置和液化循环的压缩机,以生产和液化氢气。用 EES 软件编写了模拟系统的代码。进行热力学分析是为了使所提出的模型获得更好的热效率。计算了不同电流密度值下的膜电位,并与模拟模型进行比较验证。液氢生产过程的放能效率为 57%。通过提高涡轮机的等熵效率,放能效率、ORC 的发电率和电解槽的制氢率都显著提高。在蒸发器温度为 340 K 时,ORC 的热效率为 8.5%,与之前的类似工艺相比提高了约 3%。
A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle
This study proposes a system to store waste heat as liquid hydrogen using a proton exchange membrane electrolyzer (PEME) and a mixed refrigerant hydrogen liquefaction cycle. The novelty of this study lies in proposing a waste heat recovery system that stores electricity as liquid hydrogen, consuming less power due to the improved exergy efficiency of the components. The proposed system is analyzed to achieve better efficiency in terms of thermal and exergy efficiencies. Waste heat is used to generate power by an organic Rankin cycle (ORC), produced electricity is utilized in the PEME unit and compressors of liquefaction cycle to produce and liquefy hydrogen, respectively. Codes are written in EES software to simulate the system. Thermodynamic analysis is done in order to achieve better thermal efficiency for the proposed model. Membrane potential at different values of current density is calculated and compared with validate the simulated model. The exergy efficiency of the liquid hydrogen production process is 57%. The exergy efficiency, rate of power produced in ORC, and rate of hydrogen production by the electrolyzer increase significantly by increasing the isentropic efficiency of the turbine. At a temperature of 340 K for the evaporator, the thermal efficiency of ORC is obtained at 8.5%, which is approximately 3% higher compared with that of the previous similar process.