{"title":"硬岩顶板高压磨料水射流开槽泄压技术研究","authors":"Huang Zhenfei, Wu Wenbin","doi":"10.1002/ese3.1943","DOIUrl":null,"url":null,"abstract":"<p>To solve the problem of severe rock pressure near coal mining face tunnels, a high-pressure abrasive water jet slotting and roof breaking pressure relief technology is proposed. First, the laneway deformation mechanism and the process of hard rock slotting using high-pressure abrasive water jets under long-distance cantilever conditions are analyzed, and the crack initiation conditions of roof strata are obtained. Second, slotting tests under different slotting pressures, nozzle diameters, abrasive particle sizes and slotting times were carried out, and the slotting parameters of a high-pressure abrasive water jet on a typical roof rock were obtained. Finally, industrial application was carried out in the 81,403 working face of Huayang No.1 Mine. After the hydraulic roof slotting measures were implemented in the test area, the maximum axial force of the anchor cable was reduced to 67 kN, which was 35.5% lower than that of the comparison. The average stress of the coal seam was 15 MPa, which was approximately 25% lower than that of the comparison. The deformation of the tunnel in the experimental area was significantly controlled, with an average movement of 30.0% toward the roof and floor of the tunnel and an average movement of 23.2% toward the two sides of the tunnel. Compared with the movement in the comparison section, the movement toward the roof and floor of the laneway was 42.3% lower, and the movement toward the two sides was 38.2% lower. The industrial application results show that high-pressure abrasive water jet roof slotting and pressure relief technology can cut off the stress transmission path between the roof rock on both sides, effectively improve the stress state of the surrounding rock of the laneway, reduce the deformation of the roof, floor and two sides of the working face in the later stage of the mining laneway.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5211-5229"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1943","citationCount":"0","resultStr":"{\"title\":\"Research on high-pressure abrasive water jet slotting and pressure relief technology for hard rock roof\",\"authors\":\"Huang Zhenfei, Wu Wenbin\",\"doi\":\"10.1002/ese3.1943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To solve the problem of severe rock pressure near coal mining face tunnels, a high-pressure abrasive water jet slotting and roof breaking pressure relief technology is proposed. First, the laneway deformation mechanism and the process of hard rock slotting using high-pressure abrasive water jets under long-distance cantilever conditions are analyzed, and the crack initiation conditions of roof strata are obtained. Second, slotting tests under different slotting pressures, nozzle diameters, abrasive particle sizes and slotting times were carried out, and the slotting parameters of a high-pressure abrasive water jet on a typical roof rock were obtained. Finally, industrial application was carried out in the 81,403 working face of Huayang No.1 Mine. After the hydraulic roof slotting measures were implemented in the test area, the maximum axial force of the anchor cable was reduced to 67 kN, which was 35.5% lower than that of the comparison. The average stress of the coal seam was 15 MPa, which was approximately 25% lower than that of the comparison. The deformation of the tunnel in the experimental area was significantly controlled, with an average movement of 30.0% toward the roof and floor of the tunnel and an average movement of 23.2% toward the two sides of the tunnel. Compared with the movement in the comparison section, the movement toward the roof and floor of the laneway was 42.3% lower, and the movement toward the two sides was 38.2% lower. The industrial application results show that high-pressure abrasive water jet roof slotting and pressure relief technology can cut off the stress transmission path between the roof rock on both sides, effectively improve the stress state of the surrounding rock of the laneway, reduce the deformation of the roof, floor and two sides of the working face in the later stage of the mining laneway.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"12 11\",\"pages\":\"5211-5229\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1943\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1943\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1943","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Research on high-pressure abrasive water jet slotting and pressure relief technology for hard rock roof
To solve the problem of severe rock pressure near coal mining face tunnels, a high-pressure abrasive water jet slotting and roof breaking pressure relief technology is proposed. First, the laneway deformation mechanism and the process of hard rock slotting using high-pressure abrasive water jets under long-distance cantilever conditions are analyzed, and the crack initiation conditions of roof strata are obtained. Second, slotting tests under different slotting pressures, nozzle diameters, abrasive particle sizes and slotting times were carried out, and the slotting parameters of a high-pressure abrasive water jet on a typical roof rock were obtained. Finally, industrial application was carried out in the 81,403 working face of Huayang No.1 Mine. After the hydraulic roof slotting measures were implemented in the test area, the maximum axial force of the anchor cable was reduced to 67 kN, which was 35.5% lower than that of the comparison. The average stress of the coal seam was 15 MPa, which was approximately 25% lower than that of the comparison. The deformation of the tunnel in the experimental area was significantly controlled, with an average movement of 30.0% toward the roof and floor of the tunnel and an average movement of 23.2% toward the two sides of the tunnel. Compared with the movement in the comparison section, the movement toward the roof and floor of the laneway was 42.3% lower, and the movement toward the two sides was 38.2% lower. The industrial application results show that high-pressure abrasive water jet roof slotting and pressure relief technology can cut off the stress transmission path between the roof rock on both sides, effectively improve the stress state of the surrounding rock of the laneway, reduce the deformation of the roof, floor and two sides of the working face in the later stage of the mining laneway.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.