磁层通过惠斯勒模式和超短波控制电离层 TEC 扰动

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY AGU Advances Pub Date : 2024-11-25 DOI:10.1029/2024AV001302
Yangyang Shen, Olga P. Verkhoglyadova, Anton Artemyev, Michael D. Hartinger, Vassilis Angelopoulos, Xueling Shi, Ying Zou
{"title":"磁层通过惠斯勒模式和超短波控制电离层 TEC 扰动","authors":"Yangyang Shen,&nbsp;Olga P. Verkhoglyadova,&nbsp;Anton Artemyev,&nbsp;Michael D. Hartinger,&nbsp;Vassilis Angelopoulos,&nbsp;Xueling Shi,&nbsp;Ying Zou","doi":"10.1029/2024AV001302","DOIUrl":null,"url":null,"abstract":"<p>The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra-low-frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground-based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF-modulated whistler-mode waves. We observed peak-to-peak dTEC amplitudes reaching <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 0.5 TECU (1 TECU is equal to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>6</mn>\n </msup>\n </mrow>\n <annotation> ${10}^{6}$</annotation>\n </semantics></math> electrons/<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{2}$</annotation>\n </semantics></math>) with modulations spanning scales of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 5–100 km. The cross-correlation between our modeled and observed dTEC reached <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler-mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high-latitude dTEC generation from magnetospheric wave-induced precipitation, addressing a significant gap in current physics-based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere-ionosphere coupling via ULF waves.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001302","citationCount":"0","resultStr":"{\"title\":\"Magnetospheric Control of Ionospheric TEC Perturbations via Whistler-Mode and ULF Waves\",\"authors\":\"Yangyang Shen,&nbsp;Olga P. Verkhoglyadova,&nbsp;Anton Artemyev,&nbsp;Michael D. Hartinger,&nbsp;Vassilis Angelopoulos,&nbsp;Xueling Shi,&nbsp;Ying Zou\",\"doi\":\"10.1029/2024AV001302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra-low-frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground-based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF-modulated whistler-mode waves. We observed peak-to-peak dTEC amplitudes reaching <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math> 0.5 TECU (1 TECU is equal to <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>10</mn>\\n <mn>6</mn>\\n </msup>\\n </mrow>\\n <annotation> ${10}^{6}$</annotation>\\n </semantics></math> electrons/<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{2}$</annotation>\\n </semantics></math>) with modulations spanning scales of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math> 5–100 km. The cross-correlation between our modeled and observed dTEC reached <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math> 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler-mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high-latitude dTEC generation from magnetospheric wave-induced precipitation, addressing a significant gap in current physics-based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere-ionosphere coupling via ULF waves.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001302\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地球电离层中的弱电离等离子体受控于上方太阳和磁层输入、下方大气过程和内部等离子体电动力学之间复杂的相互作用。这种相互作用导致电离层的结构和变化,给全球导航卫星系统(GNSS)相关应用和空间天气研究的准确电离层预测带来了重大挑战。电离层结构和可变性通常利用电子总含量(TEC)及其相对扰动(dTEC)来探测。在高纬度观测到的 dTEC 变化中,有一种独特的调制模式与磁层超低频波有关,但其基本机制仍不清楚。在这里,我们利用 THEMIS 航天器和位于阿拉斯加费尔班克斯的地面 GPS 接收机的磁共轭观测结果,提供了这些 dTEC 调制是由超低频调制的惠斯勒模式波引起的磁层电子沉淀驱动的直接证据。我们观测到的峰-峰 dTEC 振幅达到 ∼ ${sim} $ 0.5 TECU(1 TECU 等于 10 6 ${10}^{6}$ 电子/ m 2 ${mathrm{m}}^{2}$ ),调制尺度为 ∼ ${sim} $ 5-100 km。在共轭周期内,我们模拟的和观测到的dTEC之间的交叉相关性达到了 ∼ ${\sim} $ 0.8,但在共轭周期外则有所下降。在共轭期,惠斯勒模式波和dTEC的频谱在超低频也非常吻合,但在共轭期之外却出现了分化。我们的研究结果阐明了由磁层波引起的降水所产生的高纬度 dTEC,解决了目前基于物理学的 dTEC 建模中的一个重要空白。因此,这些结果改进了电离层 dTEC 预测,加深了我们对磁层-电离层通过超低频波耦合的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetospheric Control of Ionospheric TEC Perturbations via Whistler-Mode and ULF Waves

The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra-low-frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground-based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF-modulated whistler-mode waves. We observed peak-to-peak dTEC amplitudes reaching ${\sim} $ 0.5 TECU (1 TECU is equal to 10 6 ${10}^{6}$ electrons/ m 2 ${\mathrm{m}}^{2}$ ) with modulations spanning scales of ${\sim} $ 5–100 km. The cross-correlation between our modeled and observed dTEC reached ${\sim} $ 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler-mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high-latitude dTEC generation from magnetospheric wave-induced precipitation, addressing a significant gap in current physics-based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere-ionosphere coupling via ULF waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Distinct Energy Budgets of Mars and Earth Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry The Petrology and Geochemistry of the 2021 Fagradalsfjall Eruption, Iceland: An Eruption Sourced From Multiple, Compositionally Diverse, Near-Moho Sills Imaging Magma Reservoirs From Space With Altimetry-Derived Gravity Data Magnetospheric Control of Ionospheric TEC Perturbations via Whistler-Mode and ULF Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1