推进洪水易感性预测:在巴基斯坦高风险地区通过人工智能对机器学习算法进行比较评估和可扩展性分析

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Flood Risk Management Pub Date : 2024-11-24 DOI:10.1111/jfr3.13047
Mirza Waleed, Muhammad Sajjad
{"title":"推进洪水易感性预测:在巴基斯坦高风险地区通过人工智能对机器学习算法进行比较评估和可扩展性分析","authors":"Mirza Waleed,&nbsp;Muhammad Sajjad","doi":"10.1111/jfr3.13047","DOIUrl":null,"url":null,"abstract":"<p>Flood susceptibility mapping (FSM) is crucial for effective flood risk management, particularly in flood-prone regions like Pakistan. This study addresses the need for accurate and scalable FSM by systematically evaluating the performance of 14 machine learning (ML) models in high-risk areas of Pakistan. The novelty lies in the comprehensive comparison of these models and the use of explainable artificial intelligence (XAI) techniques. We employed XAI to identify significant conditioning factors for flood susceptibility at both the model training and prediction stages. The models were assessed for both accuracy and scalability, with specific focus on computational efficiency. Our findings indicate that LGBM and XGBoost are the top performers in terms of accuracy, with XGBoost also excelling in scalability, achieving a prediction time of ~18 s compared to LGBM's 22 s and random forest's 31 s. The evaluation framework presented is applicable to other flood-prone regions and highlights that LGBM is superior for accuracy-focused applications, while XGBoost is optimal for scenarios with computational constraints. The findings of this study can assist in accurate FSM in different regions and can also assist in scaling up the analysis to a larger geographical region which could assist in better decision-making and informed policy production for flood risk management.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13047","citationCount":"0","resultStr":"{\"title\":\"Advancing flood susceptibility prediction: A comparative assessment and scalability analysis of machine learning algorithms via artificial intelligence in high-risk regions of Pakistan\",\"authors\":\"Mirza Waleed,&nbsp;Muhammad Sajjad\",\"doi\":\"10.1111/jfr3.13047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flood susceptibility mapping (FSM) is crucial for effective flood risk management, particularly in flood-prone regions like Pakistan. This study addresses the need for accurate and scalable FSM by systematically evaluating the performance of 14 machine learning (ML) models in high-risk areas of Pakistan. The novelty lies in the comprehensive comparison of these models and the use of explainable artificial intelligence (XAI) techniques. We employed XAI to identify significant conditioning factors for flood susceptibility at both the model training and prediction stages. The models were assessed for both accuracy and scalability, with specific focus on computational efficiency. Our findings indicate that LGBM and XGBoost are the top performers in terms of accuracy, with XGBoost also excelling in scalability, achieving a prediction time of ~18 s compared to LGBM's 22 s and random forest's 31 s. The evaluation framework presented is applicable to other flood-prone regions and highlights that LGBM is superior for accuracy-focused applications, while XGBoost is optimal for scenarios with computational constraints. The findings of this study can assist in accurate FSM in different regions and can also assist in scaling up the analysis to a larger geographical region which could assist in better decision-making and informed policy production for flood risk management.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13047\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13047","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

洪水易感性绘图(FSM)对于有效的洪水风险管理至关重要,尤其是在像巴基斯坦这样的洪水易发地区。本研究通过系统评估 14 个机器学习(ML)模型在巴基斯坦高风险地区的表现,满足了对准确、可扩展的 FSM 的需求。新颖之处在于对这些模型进行了全面比较,并使用了可解释人工智能(XAI)技术。我们在模型训练和预测阶段都使用了 XAI 来识别洪水易感性的重要条件因素。我们对模型的准确性和可扩展性进行了评估,并特别关注计算效率。我们的研究结果表明,LGBM 和 XGBoost 在准确性方面表现最佳,而 XGBoost 在可扩展性方面也很出色,其预测时间约为 18 秒,而 LGBM 为 22 秒,随机森林为 31 秒。所提出的评估框架适用于其他洪水多发地区,并突出表明 LGBM 在注重准确性的应用中更胜一筹,而 XGBoost 则是计算受限情况下的最佳选择。本研究的结果有助于在不同地区实现准确的 FSM,也有助于将分析扩展到更大的地理区域,从而有助于在洪水风险管理方面做出更好的决策和制定明智的政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing flood susceptibility prediction: A comparative assessment and scalability analysis of machine learning algorithms via artificial intelligence in high-risk regions of Pakistan

Flood susceptibility mapping (FSM) is crucial for effective flood risk management, particularly in flood-prone regions like Pakistan. This study addresses the need for accurate and scalable FSM by systematically evaluating the performance of 14 machine learning (ML) models in high-risk areas of Pakistan. The novelty lies in the comprehensive comparison of these models and the use of explainable artificial intelligence (XAI) techniques. We employed XAI to identify significant conditioning factors for flood susceptibility at both the model training and prediction stages. The models were assessed for both accuracy and scalability, with specific focus on computational efficiency. Our findings indicate that LGBM and XGBoost are the top performers in terms of accuracy, with XGBoost also excelling in scalability, achieving a prediction time of ~18 s compared to LGBM's 22 s and random forest's 31 s. The evaluation framework presented is applicable to other flood-prone regions and highlights that LGBM is superior for accuracy-focused applications, while XGBoost is optimal for scenarios with computational constraints. The findings of this study can assist in accurate FSM in different regions and can also assist in scaling up the analysis to a larger geographical region which could assist in better decision-making and informed policy production for flood risk management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
期刊最新文献
Application of forecast-informed reservoir operations at US Army Corps of Engineers dams in California Combination of dynamic TOPMODEL and machine learning techniques to improve runoff prediction Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool Assessment of future risk of agricultural crop production under climate and social changes scenarios: A case of the Solo River basin in Indonesia A GIS-based tool for dynamic assessment of community susceptibility to flash flooding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1