{"title":"推进洪水易感性预测:在巴基斯坦高风险地区通过人工智能对机器学习算法进行比较评估和可扩展性分析","authors":"Mirza Waleed, Muhammad Sajjad","doi":"10.1111/jfr3.13047","DOIUrl":null,"url":null,"abstract":"<p>Flood susceptibility mapping (FSM) is crucial for effective flood risk management, particularly in flood-prone regions like Pakistan. This study addresses the need for accurate and scalable FSM by systematically evaluating the performance of 14 machine learning (ML) models in high-risk areas of Pakistan. The novelty lies in the comprehensive comparison of these models and the use of explainable artificial intelligence (XAI) techniques. We employed XAI to identify significant conditioning factors for flood susceptibility at both the model training and prediction stages. The models were assessed for both accuracy and scalability, with specific focus on computational efficiency. Our findings indicate that LGBM and XGBoost are the top performers in terms of accuracy, with XGBoost also excelling in scalability, achieving a prediction time of ~18 s compared to LGBM's 22 s and random forest's 31 s. The evaluation framework presented is applicable to other flood-prone regions and highlights that LGBM is superior for accuracy-focused applications, while XGBoost is optimal for scenarios with computational constraints. The findings of this study can assist in accurate FSM in different regions and can also assist in scaling up the analysis to a larger geographical region which could assist in better decision-making and informed policy production for flood risk management.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13047","citationCount":"0","resultStr":"{\"title\":\"Advancing flood susceptibility prediction: A comparative assessment and scalability analysis of machine learning algorithms via artificial intelligence in high-risk regions of Pakistan\",\"authors\":\"Mirza Waleed, Muhammad Sajjad\",\"doi\":\"10.1111/jfr3.13047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flood susceptibility mapping (FSM) is crucial for effective flood risk management, particularly in flood-prone regions like Pakistan. This study addresses the need for accurate and scalable FSM by systematically evaluating the performance of 14 machine learning (ML) models in high-risk areas of Pakistan. The novelty lies in the comprehensive comparison of these models and the use of explainable artificial intelligence (XAI) techniques. We employed XAI to identify significant conditioning factors for flood susceptibility at both the model training and prediction stages. The models were assessed for both accuracy and scalability, with specific focus on computational efficiency. Our findings indicate that LGBM and XGBoost are the top performers in terms of accuracy, with XGBoost also excelling in scalability, achieving a prediction time of ~18 s compared to LGBM's 22 s and random forest's 31 s. The evaluation framework presented is applicable to other flood-prone regions and highlights that LGBM is superior for accuracy-focused applications, while XGBoost is optimal for scenarios with computational constraints. The findings of this study can assist in accurate FSM in different regions and can also assist in scaling up the analysis to a larger geographical region which could assist in better decision-making and informed policy production for flood risk management.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13047\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13047","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Advancing flood susceptibility prediction: A comparative assessment and scalability analysis of machine learning algorithms via artificial intelligence in high-risk regions of Pakistan
Flood susceptibility mapping (FSM) is crucial for effective flood risk management, particularly in flood-prone regions like Pakistan. This study addresses the need for accurate and scalable FSM by systematically evaluating the performance of 14 machine learning (ML) models in high-risk areas of Pakistan. The novelty lies in the comprehensive comparison of these models and the use of explainable artificial intelligence (XAI) techniques. We employed XAI to identify significant conditioning factors for flood susceptibility at both the model training and prediction stages. The models were assessed for both accuracy and scalability, with specific focus on computational efficiency. Our findings indicate that LGBM and XGBoost are the top performers in terms of accuracy, with XGBoost also excelling in scalability, achieving a prediction time of ~18 s compared to LGBM's 22 s and random forest's 31 s. The evaluation framework presented is applicable to other flood-prone regions and highlights that LGBM is superior for accuracy-focused applications, while XGBoost is optimal for scenarios with computational constraints. The findings of this study can assist in accurate FSM in different regions and can also assist in scaling up the analysis to a larger geographical region which could assist in better decision-making and informed policy production for flood risk management.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.