不同品种叶菜中重金属的积累和风险评估。

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-11-25 DOI:10.1007/s10653-024-02314-7
Yuke Kong, Jinhui Liu, Ming Chen, Wenxiu Zheng, Yifan Liu, Yangzhou Wang, Xinling Ruan, Yangyang Wang
{"title":"不同品种叶菜中重金属的积累和风险评估。","authors":"Yuke Kong, Jinhui Liu, Ming Chen, Wenxiu Zheng, Yifan Liu, Yangzhou Wang, Xinling Ruan, Yangyang Wang","doi":"10.1007/s10653-024-02314-7","DOIUrl":null,"url":null,"abstract":"<p><p>A pot experiment was conducted to investigate the differences in heavy metal accumulation in different varieties of leafy vegetables (five leafy vegetables four or five varieties of each) and their potential risk. The results revealed that the concentrations of Cd in all the vegetables exceeded the limit for China (0.2 mg/kg) and that the As and Pb concentrations were within the limit. The bioaccumulation of Pb, Cd, and As in spinach (0.01, 1.08, and 0.02) and rape seedlings (0.004, 0.43, and 0.03) were the highest and lowest, respectively. Health risk assessments indicate that the hazard index (HI) ranged from 0.66 to 3.37 and 2.86 to 14.64 for adults and children, respectively, and the total carcinogenic risk (TCR) ranged from 2.13E-03 to 1.86E-02 and 9.27E-03 to 8.07E-02. Probabilistic health risk assessment revealed that the HI was 3.06 and 4.75, and the TCR was 2.5E-03 and 8.88E-04 for adults and children, respectively. More importantly, heavy metal accumulation significantly differed among varieties of leafy vegetables, especially spinach. The BF of Pb, Cd, and As in spinach ranged from 0.003 to 0.01, 0.77 to 1.39, and 0.01 to 0.02, respectively. Geodetector analysis revealed that oxalic acid, available As, and organic matter are the key factors that affect Pb, Cd, and As accumulation, respectively, in these vegetables. These results suggest that the planting of suitable types and varieties of vegetables can reduce the potential health risk to a certain extent and that more effective measures should be implemented to ensure the safety of local residents in areas contaminated with heavy metals.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"527"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulation and risk assessment of heavy metals in different varieties of leafy vegetables.\",\"authors\":\"Yuke Kong, Jinhui Liu, Ming Chen, Wenxiu Zheng, Yifan Liu, Yangzhou Wang, Xinling Ruan, Yangyang Wang\",\"doi\":\"10.1007/s10653-024-02314-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A pot experiment was conducted to investigate the differences in heavy metal accumulation in different varieties of leafy vegetables (five leafy vegetables four or five varieties of each) and their potential risk. The results revealed that the concentrations of Cd in all the vegetables exceeded the limit for China (0.2 mg/kg) and that the As and Pb concentrations were within the limit. The bioaccumulation of Pb, Cd, and As in spinach (0.01, 1.08, and 0.02) and rape seedlings (0.004, 0.43, and 0.03) were the highest and lowest, respectively. Health risk assessments indicate that the hazard index (HI) ranged from 0.66 to 3.37 and 2.86 to 14.64 for adults and children, respectively, and the total carcinogenic risk (TCR) ranged from 2.13E-03 to 1.86E-02 and 9.27E-03 to 8.07E-02. Probabilistic health risk assessment revealed that the HI was 3.06 and 4.75, and the TCR was 2.5E-03 and 8.88E-04 for adults and children, respectively. More importantly, heavy metal accumulation significantly differed among varieties of leafy vegetables, especially spinach. The BF of Pb, Cd, and As in spinach ranged from 0.003 to 0.01, 0.77 to 1.39, and 0.01 to 0.02, respectively. Geodetector analysis revealed that oxalic acid, available As, and organic matter are the key factors that affect Pb, Cd, and As accumulation, respectively, in these vegetables. These results suggest that the planting of suitable types and varieties of vegetables can reduce the potential health risk to a certain extent and that more effective measures should be implemented to ensure the safety of local residents in areas contaminated with heavy metals.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 12\",\"pages\":\"527\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02314-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02314-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为研究不同品种叶菜(5 种叶菜,每种 4 或 5 种)的重金属积累差异及其潜在风险,进行了盆栽实验。结果显示,所有蔬菜中的镉浓度都超过了中国的限量(0.2 毫克/千克),而砷和铅的浓度则在限量之内。菠菜(0.01、1.08 和 0.02)和油菜幼苗(0.004、0.43 和 0.03)中铅、镉和砷的生物累积量分别最高和最低。健康风险评估表明,成人和儿童的危害指数(HI)分别为 0.66 至 3.37 和 2.86 至 14.64,总致癌风险(TCR)分别为 2.13E-03 至 1.86E-02 和 9.27E-03 至 8.07E-02。概率健康风险评估显示,成人和儿童的 HI 分别为 3.06 和 4.75,TCR 分别为 2.5E-03 和 8.88E-04。更重要的是,不同品种的叶菜,尤其是菠菜,其重金属累积量存在显著差异。菠菜中铅、镉和砷的BF值分别为0.003至0.01、0.77至1.39和0.01至0.02。土壤检测仪分析表明,草酸、可利用砷和有机质分别是影响这些蔬菜中铅、镉和砷积累的关键因素。这些结果表明,种植合适的蔬菜种类和品种可在一定程度上降低潜在的健康风险,同时应采取更有效的措施确保重金属污染地区居民的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accumulation and risk assessment of heavy metals in different varieties of leafy vegetables.

A pot experiment was conducted to investigate the differences in heavy metal accumulation in different varieties of leafy vegetables (five leafy vegetables four or five varieties of each) and their potential risk. The results revealed that the concentrations of Cd in all the vegetables exceeded the limit for China (0.2 mg/kg) and that the As and Pb concentrations were within the limit. The bioaccumulation of Pb, Cd, and As in spinach (0.01, 1.08, and 0.02) and rape seedlings (0.004, 0.43, and 0.03) were the highest and lowest, respectively. Health risk assessments indicate that the hazard index (HI) ranged from 0.66 to 3.37 and 2.86 to 14.64 for adults and children, respectively, and the total carcinogenic risk (TCR) ranged from 2.13E-03 to 1.86E-02 and 9.27E-03 to 8.07E-02. Probabilistic health risk assessment revealed that the HI was 3.06 and 4.75, and the TCR was 2.5E-03 and 8.88E-04 for adults and children, respectively. More importantly, heavy metal accumulation significantly differed among varieties of leafy vegetables, especially spinach. The BF of Pb, Cd, and As in spinach ranged from 0.003 to 0.01, 0.77 to 1.39, and 0.01 to 0.02, respectively. Geodetector analysis revealed that oxalic acid, available As, and organic matter are the key factors that affect Pb, Cd, and As accumulation, respectively, in these vegetables. These results suggest that the planting of suitable types and varieties of vegetables can reduce the potential health risk to a certain extent and that more effective measures should be implemented to ensure the safety of local residents in areas contaminated with heavy metals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Evaluation of Fenton-like reaction for sorption and degradation of kasugamycin in the presence of biochar. Sustainable remediation of abandoned coal mines using vermicompost: a case study in Ledo coal mine, India. Evaluating the bioavailability of rare earth elements in paddy soils and their uptake in rice grains for human health risk. Geochemical partitioning and leaching behaviour of geogenic contaminants from the partially weathered rocks in chronic kidney disease of unknown etiology (CKDu) endemic regions in Sri Lanka. Assessment of groundwater chemistry to predict arsenic contamination from a canal commanded area: applications of different machine learning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1