{"title":"Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction.","authors":"Rahel Khidr, Karzan Qurbani, Vania Muhammed, Sazgar Salim, Shajwan Abdulla, Hevy Wsw","doi":"10.1007/s10653-025-02392-1","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal contamination represents a critical environmental and public health challenge, necessitating effective remediation approaches. This study examines the bioremediation potential of three indigenous bacterial strains Aeromonas caviae KQ_21, Aeromonas hydrophila AUoR_24, and Shewanella putrefaciens SUoR_24 evaluated both individually and in consortia for their capacity to remove heavy metals. Tolerance assessments demonstrated that the coculture of these strains exhibited superior resistance to copper (Cu), zinc (Zn), and nickel (Ni), with optimal growth observed up to 6 mM for Cu, 9 mM for Zn, and 5 mM for Ni, outperforming the monocultures. The co-culture system also achieved higher metal reduction efficiencies, with reductions of 47.02% for Cu, 61.49% for Ni, and 61.93% for Zn, in contrast to lower reductions observed in individual strains. The study further explored the impact of environmental conditions on bioremediation efficiency. Optimal temperature for both monoculture and coculture setups was found to be 30 °C. pH and salt concentration variations significantly affected bacterial growth and metal reduction, highlighting the necessity of tailored conditions for enhanced bioremediation. In terms of metal removal mechanisms, the results demonstrated that nickel (Ni) removal occurred primarily through bioaccumulation, while copper (Cu) removal involved both biosorption and bioaccumulation. Zinc (Zn) removal was facilitated through biosorption, bioaccumulation, and biotransformation. These findings underscore the effectiveness of bacterial consortia, particularly indigenous strains, in improving heavy metal tolerance and reduction through synergistic interactions and cooperative metabolic processes. This research offers valuable insights into optimizing bacterial consortia for environmental cleanup and advances the application of indigenous bacteria in bioremediation strategies. Future investigations should focus on exploring additional microbial species and further elucidating the molecular mechanisms that contribute to enhanced bioremediation efficacy.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"79"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02392-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal contamination represents a critical environmental and public health challenge, necessitating effective remediation approaches. This study examines the bioremediation potential of three indigenous bacterial strains Aeromonas caviae KQ_21, Aeromonas hydrophila AUoR_24, and Shewanella putrefaciens SUoR_24 evaluated both individually and in consortia for their capacity to remove heavy metals. Tolerance assessments demonstrated that the coculture of these strains exhibited superior resistance to copper (Cu), zinc (Zn), and nickel (Ni), with optimal growth observed up to 6 mM for Cu, 9 mM for Zn, and 5 mM for Ni, outperforming the monocultures. The co-culture system also achieved higher metal reduction efficiencies, with reductions of 47.02% for Cu, 61.49% for Ni, and 61.93% for Zn, in contrast to lower reductions observed in individual strains. The study further explored the impact of environmental conditions on bioremediation efficiency. Optimal temperature for both monoculture and coculture setups was found to be 30 °C. pH and salt concentration variations significantly affected bacterial growth and metal reduction, highlighting the necessity of tailored conditions for enhanced bioremediation. In terms of metal removal mechanisms, the results demonstrated that nickel (Ni) removal occurred primarily through bioaccumulation, while copper (Cu) removal involved both biosorption and bioaccumulation. Zinc (Zn) removal was facilitated through biosorption, bioaccumulation, and biotransformation. These findings underscore the effectiveness of bacterial consortia, particularly indigenous strains, in improving heavy metal tolerance and reduction through synergistic interactions and cooperative metabolic processes. This research offers valuable insights into optimizing bacterial consortia for environmental cleanup and advances the application of indigenous bacteria in bioremediation strategies. Future investigations should focus on exploring additional microbial species and further elucidating the molecular mechanisms that contribute to enhanced bioremediation efficacy.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.