{"title":"利用红外跟踪技术对走动式 PET 扫描仪和标准轴向视场宠物扫描仪中的患者运动进行定量分析。","authors":"Rabia Aziz, Jens Maebe, Florence Marie Muller, Yves D'Asseler, Stefaan Vandenberghe","doi":"10.1186/s40658-024-00704-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-axial field-of-view (LAFOV) Positron Emission Tomography (PET) scanners provide high sensitivity, but throughput is limited because of time-consuming patient positioning. To enhance throughput, a novel Walk-Through PET (WT-PET) scanner has been developed, allowing patients to stand upright, supported by an adjustable headrest and hand supports. This study evaluates the degree of motion in the WT-PET system and compares it with the standard PET-CT.</p><p><strong>Methods: </strong>Three studies were conducted with healthy volunteers to estimate motion. The first two studies assessed motion in the WT-PET's Design I (Study 1) and Design II (Study 2), while the third study compared motion on a standard PET-CT scanner bed (Study 3). Infrared markers placed on the head, shoulders, chest, and abdomen were tracked and processed using image-processing techniques involving thresholding and connected component analysis. Videos were recorded for normal breathing and breath-holding conditions, and 2D centroids were transformed into 3D coordinates using depth information.</p><p><strong>Results: </strong>The results shows a significant reduction in motion during breath-holding, especially for the abdomen. Mean motion distances decreased from 2.63 mm to 2.18 mm in Study 1 and from 2.42 mm to 1.67 mm in Study 2. Statistical analysis revealed notable differences in motion between the WT-PET and mCT scanners. The Shapiro-Wilk test indicated non-normal motion distributions in the head, right shoulder, and abdomen for both systems, leading to the use of the Wilcoxon signed-rank test for all markers. Significant differences were found in the right shoulder (p = 0.0266), left shoulder (p = 0.0004) and chest (p < 0.0001) but no significant differences were observed in the head (p = 0.1327) and abdomen (p = 0.8404).</p><p><strong>Conclusion: </strong>This study provides a comprehensive analysis of patient motion in a WT-PET scanner with respect to the standard PET. The findings highlight a significant increase in shoulder and chest motion, while the head and abdomen regions showed more stability.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"99"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of patient motion in walk-through PET scanner and standard axial field of view pet scanner using infrared-based tracking.\",\"authors\":\"Rabia Aziz, Jens Maebe, Florence Marie Muller, Yves D'Asseler, Stefaan Vandenberghe\",\"doi\":\"10.1186/s40658-024-00704-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Long-axial field-of-view (LAFOV) Positron Emission Tomography (PET) scanners provide high sensitivity, but throughput is limited because of time-consuming patient positioning. To enhance throughput, a novel Walk-Through PET (WT-PET) scanner has been developed, allowing patients to stand upright, supported by an adjustable headrest and hand supports. This study evaluates the degree of motion in the WT-PET system and compares it with the standard PET-CT.</p><p><strong>Methods: </strong>Three studies were conducted with healthy volunteers to estimate motion. The first two studies assessed motion in the WT-PET's Design I (Study 1) and Design II (Study 2), while the third study compared motion on a standard PET-CT scanner bed (Study 3). Infrared markers placed on the head, shoulders, chest, and abdomen were tracked and processed using image-processing techniques involving thresholding and connected component analysis. Videos were recorded for normal breathing and breath-holding conditions, and 2D centroids were transformed into 3D coordinates using depth information.</p><p><strong>Results: </strong>The results shows a significant reduction in motion during breath-holding, especially for the abdomen. Mean motion distances decreased from 2.63 mm to 2.18 mm in Study 1 and from 2.42 mm to 1.67 mm in Study 2. Statistical analysis revealed notable differences in motion between the WT-PET and mCT scanners. The Shapiro-Wilk test indicated non-normal motion distributions in the head, right shoulder, and abdomen for both systems, leading to the use of the Wilcoxon signed-rank test for all markers. Significant differences were found in the right shoulder (p = 0.0266), left shoulder (p = 0.0004) and chest (p < 0.0001) but no significant differences were observed in the head (p = 0.1327) and abdomen (p = 0.8404).</p><p><strong>Conclusion: </strong>This study provides a comprehensive analysis of patient motion in a WT-PET scanner with respect to the standard PET. The findings highlight a significant increase in shoulder and chest motion, while the head and abdomen regions showed more stability.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"99\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00704-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00704-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Quantitative analysis of patient motion in walk-through PET scanner and standard axial field of view pet scanner using infrared-based tracking.
Background: Long-axial field-of-view (LAFOV) Positron Emission Tomography (PET) scanners provide high sensitivity, but throughput is limited because of time-consuming patient positioning. To enhance throughput, a novel Walk-Through PET (WT-PET) scanner has been developed, allowing patients to stand upright, supported by an adjustable headrest and hand supports. This study evaluates the degree of motion in the WT-PET system and compares it with the standard PET-CT.
Methods: Three studies were conducted with healthy volunteers to estimate motion. The first two studies assessed motion in the WT-PET's Design I (Study 1) and Design II (Study 2), while the third study compared motion on a standard PET-CT scanner bed (Study 3). Infrared markers placed on the head, shoulders, chest, and abdomen were tracked and processed using image-processing techniques involving thresholding and connected component analysis. Videos were recorded for normal breathing and breath-holding conditions, and 2D centroids were transformed into 3D coordinates using depth information.
Results: The results shows a significant reduction in motion during breath-holding, especially for the abdomen. Mean motion distances decreased from 2.63 mm to 2.18 mm in Study 1 and from 2.42 mm to 1.67 mm in Study 2. Statistical analysis revealed notable differences in motion between the WT-PET and mCT scanners. The Shapiro-Wilk test indicated non-normal motion distributions in the head, right shoulder, and abdomen for both systems, leading to the use of the Wilcoxon signed-rank test for all markers. Significant differences were found in the right shoulder (p = 0.0266), left shoulder (p = 0.0004) and chest (p < 0.0001) but no significant differences were observed in the head (p = 0.1327) and abdomen (p = 0.8404).
Conclusion: This study provides a comprehensive analysis of patient motion in a WT-PET scanner with respect to the standard PET. The findings highlight a significant increase in shoulder and chest motion, while the head and abdomen regions showed more stability.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.