利用特征提取的变压器故障诊断模型研究。

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-11-01 DOI:10.1063/5.0225204
Yongcan Zhu, Zhenyan Guo, Xiaoxuan Zhan, Xinbo Huang
{"title":"利用特征提取的变压器故障诊断模型研究。","authors":"Yongcan Zhu, Zhenyan Guo, Xiaoxuan Zhan, Xinbo Huang","doi":"10.1063/5.0225204","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenge of low accuracy in traditional transformer fault diagnosis algorithms, this paper introduces a novel approach that utilizes the Artificial Hummingbird Algorithm (AHA) to optimize both Kernel Principal Component Analysis (KPCA) and Extreme Learning Machine (ELM). We propose the use of various gas concentration ratio features and apply the AHA algorithm to fine-tune the kernel function parameters of KPCA, thus establishing an AHA-KPCA feature extraction model. This model takes the expanded gas concentration ratio features as input and selects the top N principal components with a cumulative contribution rate above 95% to form the feature vectors for fault classification. Following this, the AHA algorithm is employed to optimize the input weights and hidden layer biases of the ELM, leading to the development of the AHA-ELM fault classification model. Ultimately, the principal components identified by AHA-KPCA serve as inputs for the simulation verification of the AHA-ELM model. Experimental results indicate that the proposed AHA-KPCA-ELM method attains an accuracy rate of 95.73%, surpassing traditional intelligent diagnostic methods and existing advanced algorithms, thereby confirming the effectiveness of our proposed method.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on transformer fault diagnosis models with feature extraction.\",\"authors\":\"Yongcan Zhu, Zhenyan Guo, Xiaoxuan Zhan, Xinbo Huang\",\"doi\":\"10.1063/5.0225204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the challenge of low accuracy in traditional transformer fault diagnosis algorithms, this paper introduces a novel approach that utilizes the Artificial Hummingbird Algorithm (AHA) to optimize both Kernel Principal Component Analysis (KPCA) and Extreme Learning Machine (ELM). We propose the use of various gas concentration ratio features and apply the AHA algorithm to fine-tune the kernel function parameters of KPCA, thus establishing an AHA-KPCA feature extraction model. This model takes the expanded gas concentration ratio features as input and selects the top N principal components with a cumulative contribution rate above 95% to form the feature vectors for fault classification. Following this, the AHA algorithm is employed to optimize the input weights and hidden layer biases of the ELM, leading to the development of the AHA-ELM fault classification model. Ultimately, the principal components identified by AHA-KPCA serve as inputs for the simulation verification of the AHA-ELM model. Experimental results indicate that the proposed AHA-KPCA-ELM method attains an accuracy rate of 95.73%, surpassing traditional intelligent diagnostic methods and existing advanced algorithms, thereby confirming the effectiveness of our proposed method.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"95 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0225204\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0225204","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

针对传统变压器故障诊断算法准确率低的难题,本文介绍了一种利用人工蜂鸟算法(AHA)优化核主成分分析法(KPCA)和极限学习机(ELM)的新方法。我们建议使用各种气体浓度比特征,并应用 AHA 算法微调 KPCA 的核函数参数,从而建立 AHA-KPCA 特征提取模型。该模型将扩展的气体浓度比特征作为输入,并选择累计贡献率高于 95% 的前 N 个主成分组成特征向量,用于故障分类。随后,采用 AHA 算法优化 ELM 的输入权重和隐藏层偏置,从而开发出 AHA-ELM 故障分类模型。最后,AHA-KPCA 确定的主成分将作为 AHA-ELM 模型模拟验证的输入。实验结果表明,所提出的 AHA-KPCA-ELM 方法的准确率达到 95.73%,超过了传统的智能诊断方法和现有的先进算法,从而证实了我们所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on transformer fault diagnosis models with feature extraction.

To address the challenge of low accuracy in traditional transformer fault diagnosis algorithms, this paper introduces a novel approach that utilizes the Artificial Hummingbird Algorithm (AHA) to optimize both Kernel Principal Component Analysis (KPCA) and Extreme Learning Machine (ELM). We propose the use of various gas concentration ratio features and apply the AHA algorithm to fine-tune the kernel function parameters of KPCA, thus establishing an AHA-KPCA feature extraction model. This model takes the expanded gas concentration ratio features as input and selects the top N principal components with a cumulative contribution rate above 95% to form the feature vectors for fault classification. Following this, the AHA algorithm is employed to optimize the input weights and hidden layer biases of the ELM, leading to the development of the AHA-ELM fault classification model. Ultimately, the principal components identified by AHA-KPCA serve as inputs for the simulation verification of the AHA-ELM model. Experimental results indicate that the proposed AHA-KPCA-ELM method attains an accuracy rate of 95.73%, surpassing traditional intelligent diagnostic methods and existing advanced algorithms, thereby confirming the effectiveness of our proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime. Analyzing the effects of reflections on optical diagnostics in the main chamber and divertor of WEST (invited). Application of tunneling magnetoresistance in electromagnetic tomography system construction. Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K. Design of a novel high-speed tensile method for testing the high strain rate tensile behavior of aluminum alloys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1