Shirin Jalili, Seyed Mohammad Ali Hashemi, Jamal Sarvari
{"title":"SARS-COV-2 ORF9b 对肝细胞系中的纤维蛋白原和白蛋白基因产生失调作用","authors":"Shirin Jalili, Seyed Mohammad Ali Hashemi, Jamal Sarvari","doi":"10.61186/rbmb.13.1.51","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Individuals experiencing severe cases of Coronavirus Disease 2019 (COVID-19) exhibited elevated fibrinogen levels and decreased albumin levels, potentially linked to the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proteins. Consequently, our study endeavors to examine the impact of SARS-CoV-2 ORF9b on the expression of fibrinogen and albumin genes within the Hep-G2 cell line.</p><p><strong>Methods: </strong>In this study, the Hep-G2 liver cell line was utilized alongside the plasmid pcDNA3.1 hyg+ containing ORF9b from the SARS-CoV-2 strain originating in Wuhan. Transfection procedures were executed, and the transfected cells were selected utilizing hygromycin B. Validation of ORF9b expression was conducted through SYBR green-based real-time PCR, and the expression of the Fibrinogen α (FGA), Fibrinogen β (FGB), Fibrinogen γ (FGG), and Albumin (ALB) genes was quantified using the same method.</p><p><strong>Results: </strong>The real-time PCR analysis revealed a significant upregulation of fibrinogen genes-α (P=0.03), β (P=0.02), and γ (P=0.029) in Hep-G2 cells containing ORF9b compared to control cells. Furthermore, the findings indicated a markedly lower expression level of albumin in Hep-G2 cells harboring ORF9b compared to the control cells (P=0.028).</p><p><strong>Conclusions: </strong>The findings suggest that SARS-CoV-2 ORF9b could potentially influence the course of SARS-CoV-2 infection by triggering the expression of α, β, and γ fibrinogen gene chains while suppressing the albumin gene. Further investigations are warranted to validate these observations across various SARS-CoV-2 strains exhibiting differing levels of pathogenicity.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"13 1","pages":"51-58"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580134/pdf/","citationCount":"0","resultStr":"{\"title\":\"SARS-COV-2 ORF9b Dysregulate Fibrinogen and Albumin Genes in a Liver Cell Line.\",\"authors\":\"Shirin Jalili, Seyed Mohammad Ali Hashemi, Jamal Sarvari\",\"doi\":\"10.61186/rbmb.13.1.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Individuals experiencing severe cases of Coronavirus Disease 2019 (COVID-19) exhibited elevated fibrinogen levels and decreased albumin levels, potentially linked to the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proteins. Consequently, our study endeavors to examine the impact of SARS-CoV-2 ORF9b on the expression of fibrinogen and albumin genes within the Hep-G2 cell line.</p><p><strong>Methods: </strong>In this study, the Hep-G2 liver cell line was utilized alongside the plasmid pcDNA3.1 hyg+ containing ORF9b from the SARS-CoV-2 strain originating in Wuhan. Transfection procedures were executed, and the transfected cells were selected utilizing hygromycin B. Validation of ORF9b expression was conducted through SYBR green-based real-time PCR, and the expression of the Fibrinogen α (FGA), Fibrinogen β (FGB), Fibrinogen γ (FGG), and Albumin (ALB) genes was quantified using the same method.</p><p><strong>Results: </strong>The real-time PCR analysis revealed a significant upregulation of fibrinogen genes-α (P=0.03), β (P=0.02), and γ (P=0.029) in Hep-G2 cells containing ORF9b compared to control cells. Furthermore, the findings indicated a markedly lower expression level of albumin in Hep-G2 cells harboring ORF9b compared to the control cells (P=0.028).</p><p><strong>Conclusions: </strong>The findings suggest that SARS-CoV-2 ORF9b could potentially influence the course of SARS-CoV-2 infection by triggering the expression of α, β, and γ fibrinogen gene chains while suppressing the albumin gene. Further investigations are warranted to validate these observations across various SARS-CoV-2 strains exhibiting differing levels of pathogenicity.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":\"13 1\",\"pages\":\"51-58\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580134/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/rbmb.13.1.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.13.1.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SARS-COV-2 ORF9b Dysregulate Fibrinogen and Albumin Genes in a Liver Cell Line.
Background: Individuals experiencing severe cases of Coronavirus Disease 2019 (COVID-19) exhibited elevated fibrinogen levels and decreased albumin levels, potentially linked to the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proteins. Consequently, our study endeavors to examine the impact of SARS-CoV-2 ORF9b on the expression of fibrinogen and albumin genes within the Hep-G2 cell line.
Methods: In this study, the Hep-G2 liver cell line was utilized alongside the plasmid pcDNA3.1 hyg+ containing ORF9b from the SARS-CoV-2 strain originating in Wuhan. Transfection procedures were executed, and the transfected cells were selected utilizing hygromycin B. Validation of ORF9b expression was conducted through SYBR green-based real-time PCR, and the expression of the Fibrinogen α (FGA), Fibrinogen β (FGB), Fibrinogen γ (FGG), and Albumin (ALB) genes was quantified using the same method.
Results: The real-time PCR analysis revealed a significant upregulation of fibrinogen genes-α (P=0.03), β (P=0.02), and γ (P=0.029) in Hep-G2 cells containing ORF9b compared to control cells. Furthermore, the findings indicated a markedly lower expression level of albumin in Hep-G2 cells harboring ORF9b compared to the control cells (P=0.028).
Conclusions: The findings suggest that SARS-CoV-2 ORF9b could potentially influence the course of SARS-CoV-2 infection by triggering the expression of α, β, and γ fibrinogen gene chains while suppressing the albumin gene. Further investigations are warranted to validate these observations across various SARS-CoV-2 strains exhibiting differing levels of pathogenicity.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.