Alicja Dutkiewicz, Thomas E. O'Brien, Thomas Schuster
{"title":"多体哈密顿学习中的量子控制优势","authors":"Alicja Dutkiewicz, Thomas E. O'Brien, Thomas Schuster","doi":"10.22331/q-2024-11-26-1537","DOIUrl":null,"url":null,"abstract":"We study the problem of learning the Hamiltonian of a many-body quantum system from experimental data. We show that the rate of learning depends on the amount of control available during the experiment. We consider three control models: one where time evolution can be augmented with instantaneous quantum operations, one where the Hamiltonian itself can be augmented by adding constant terms, and one where the experimentalist has no control over the system's time evolution. With continuous quantum control, we provide an adaptive algorithm for learning a many-body Hamiltonian at the Heisenberg limit: $T = \\mathcal{O}(\\epsilon^{-1})$, where $T$ is the total amount of time evolution across all experiments and $\\epsilon$ is the target precision. This requires only preparation of product states, time-evolution, and measurement in a product basis. In the absence of quantum control, we prove that learning is standard quantum limited, $T = \\Omega(\\epsilon^{-2})$, for large classes of many-body Hamiltonians, including any Hamiltonian that thermalizes via the eigenstate thermalization hypothesis. These results establish a quadratic advantage in experimental runtime for learning with quantum control.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"62 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The advantage of quantum control in many-body Hamiltonian learning\",\"authors\":\"Alicja Dutkiewicz, Thomas E. O'Brien, Thomas Schuster\",\"doi\":\"10.22331/q-2024-11-26-1537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of learning the Hamiltonian of a many-body quantum system from experimental data. We show that the rate of learning depends on the amount of control available during the experiment. We consider three control models: one where time evolution can be augmented with instantaneous quantum operations, one where the Hamiltonian itself can be augmented by adding constant terms, and one where the experimentalist has no control over the system's time evolution. With continuous quantum control, we provide an adaptive algorithm for learning a many-body Hamiltonian at the Heisenberg limit: $T = \\\\mathcal{O}(\\\\epsilon^{-1})$, where $T$ is the total amount of time evolution across all experiments and $\\\\epsilon$ is the target precision. This requires only preparation of product states, time-evolution, and measurement in a product basis. In the absence of quantum control, we prove that learning is standard quantum limited, $T = \\\\Omega(\\\\epsilon^{-2})$, for large classes of many-body Hamiltonians, including any Hamiltonian that thermalizes via the eigenstate thermalization hypothesis. These results establish a quadratic advantage in experimental runtime for learning with quantum control.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-11-26-1537\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-26-1537","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The advantage of quantum control in many-body Hamiltonian learning
We study the problem of learning the Hamiltonian of a many-body quantum system from experimental data. We show that the rate of learning depends on the amount of control available during the experiment. We consider three control models: one where time evolution can be augmented with instantaneous quantum operations, one where the Hamiltonian itself can be augmented by adding constant terms, and one where the experimentalist has no control over the system's time evolution. With continuous quantum control, we provide an adaptive algorithm for learning a many-body Hamiltonian at the Heisenberg limit: $T = \mathcal{O}(\epsilon^{-1})$, where $T$ is the total amount of time evolution across all experiments and $\epsilon$ is the target precision. This requires only preparation of product states, time-evolution, and measurement in a product basis. In the absence of quantum control, we prove that learning is standard quantum limited, $T = \Omega(\epsilon^{-2})$, for large classes of many-body Hamiltonians, including any Hamiltonian that thermalizes via the eigenstate thermalization hypothesis. These results establish a quadratic advantage in experimental runtime for learning with quantum control.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.