{"title":"用载入塞拉斯特罗的可膨胀水凝胶构建微针,有效治疗耐药菌株引发的皮肤感染","authors":"Jianbin Deng, Mengqi Liu, Shiqi Gao, Dongjie Lei, Zhicheng Su, Fuqing Liang, Songyun Tang, Huiyuan Yang, Yuan-Yuan Huang, Weiquan Xie, Guang-Yu Pan","doi":"10.1021/acs.langmuir.4c03593","DOIUrl":null,"url":null,"abstract":"The urgent need for new antimicrobial drugs arises from the limited efficacy of traditional antibiotics against emerging drug-resistant strains. Celastrol (CSL) demonstrates an exceptional antibacterial property that remains unaffected by bacterial resistance, but its poor water solubility limits its wide applications. This study uses the hydrophobic inner cavity of mono-(6-diethylenetriamine-6-deoxy)-β-cyclodextrin (mβ-CD) (a derivative of cyclodextrin) to encapsulate CSL, constructing an inclusion complex (CSL@mβ-CD) to enhance the water solubility of CSL. The obtained inclusion complex is further incorporated into a swellable hydrogel microneedle (MN) to obtain CSL@mβ-CD/MN. The fabricated CSL@mβ-CD/MN can enable the sustained release of CSL, achieving effective bacterial eradication at infected sites. In vivo experiments demonstrate that CSL@mβ-CD/MN has a remarkable efficacy in the treatment of methicillin-resistant <i>Staphylococcus aureus</i>-induced subcutaneous abscesses and wound infections. Specifically, CSL@mβ-CD/MN can effectively penetrate the stratum corneum of the skin to realize rapid elimination of the bacteria in wounds. Moreover, CSL@mβ-CD/MN can efficiently scavenge reactive oxygen species, promote M2 polarization of macrophages, and relieve local inflammation at the wound sites. These results reveal that CSL@mβ-CD/MN holds great promise in the clinical treatment of acute skin infections induced by drug-resistant bacteria.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"19 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microneedles Constructed by Swellable Hydrogels Loaded with Celastrol for Efficient Treatment of Skin Infections Induced by Drug-Resistant Bacterial Strains\",\"authors\":\"Jianbin Deng, Mengqi Liu, Shiqi Gao, Dongjie Lei, Zhicheng Su, Fuqing Liang, Songyun Tang, Huiyuan Yang, Yuan-Yuan Huang, Weiquan Xie, Guang-Yu Pan\",\"doi\":\"10.1021/acs.langmuir.4c03593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The urgent need for new antimicrobial drugs arises from the limited efficacy of traditional antibiotics against emerging drug-resistant strains. Celastrol (CSL) demonstrates an exceptional antibacterial property that remains unaffected by bacterial resistance, but its poor water solubility limits its wide applications. This study uses the hydrophobic inner cavity of mono-(6-diethylenetriamine-6-deoxy)-β-cyclodextrin (mβ-CD) (a derivative of cyclodextrin) to encapsulate CSL, constructing an inclusion complex (CSL@mβ-CD) to enhance the water solubility of CSL. The obtained inclusion complex is further incorporated into a swellable hydrogel microneedle (MN) to obtain CSL@mβ-CD/MN. The fabricated CSL@mβ-CD/MN can enable the sustained release of CSL, achieving effective bacterial eradication at infected sites. In vivo experiments demonstrate that CSL@mβ-CD/MN has a remarkable efficacy in the treatment of methicillin-resistant <i>Staphylococcus aureus</i>-induced subcutaneous abscesses and wound infections. Specifically, CSL@mβ-CD/MN can effectively penetrate the stratum corneum of the skin to realize rapid elimination of the bacteria in wounds. Moreover, CSL@mβ-CD/MN can efficiently scavenge reactive oxygen species, promote M2 polarization of macrophages, and relieve local inflammation at the wound sites. These results reveal that CSL@mβ-CD/MN holds great promise in the clinical treatment of acute skin infections induced by drug-resistant bacteria.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03593\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03593","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microneedles Constructed by Swellable Hydrogels Loaded with Celastrol for Efficient Treatment of Skin Infections Induced by Drug-Resistant Bacterial Strains
The urgent need for new antimicrobial drugs arises from the limited efficacy of traditional antibiotics against emerging drug-resistant strains. Celastrol (CSL) demonstrates an exceptional antibacterial property that remains unaffected by bacterial resistance, but its poor water solubility limits its wide applications. This study uses the hydrophobic inner cavity of mono-(6-diethylenetriamine-6-deoxy)-β-cyclodextrin (mβ-CD) (a derivative of cyclodextrin) to encapsulate CSL, constructing an inclusion complex (CSL@mβ-CD) to enhance the water solubility of CSL. The obtained inclusion complex is further incorporated into a swellable hydrogel microneedle (MN) to obtain CSL@mβ-CD/MN. The fabricated CSL@mβ-CD/MN can enable the sustained release of CSL, achieving effective bacterial eradication at infected sites. In vivo experiments demonstrate that CSL@mβ-CD/MN has a remarkable efficacy in the treatment of methicillin-resistant Staphylococcus aureus-induced subcutaneous abscesses and wound infections. Specifically, CSL@mβ-CD/MN can effectively penetrate the stratum corneum of the skin to realize rapid elimination of the bacteria in wounds. Moreover, CSL@mβ-CD/MN can efficiently scavenge reactive oxygen species, promote M2 polarization of macrophages, and relieve local inflammation at the wound sites. These results reveal that CSL@mβ-CD/MN holds great promise in the clinical treatment of acute skin infections induced by drug-resistant bacteria.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).