Madeline E. Clough, Eduardo Ochoa Rivera, Rebecca L. Parham, Andrew P. Ault, Paul M. Zimmerman, Anne J. McNeil, Ambuj Tewari
{"title":"通过共形预测增强微塑料光谱识别的可信度","authors":"Madeline E. Clough, Eduardo Ochoa Rivera, Rebecca L. Parham, Andrew P. Ault, Paul M. Zimmerman, Anne J. McNeil, Ambuj Tewari","doi":"10.1021/acs.est.4c05167","DOIUrl":null,"url":null,"abstract":"Microplastics are an emerging pollutant of concern, with environmental observations recorded across the world. Identifying the type of microplastic is challenging due to spectral similarities among the most common polymers, necessitating methods that can confidently distinguish plastic identities. In practice, a researcher chooses the reference vibrational spectrum that is most like the unknown spectrum, where the likeness between the two spectra is expressed numerically as the hit quality index (HQI). Despite the widespread use of HQI thresholds in the literature, acceptance of a spectral label often lacks any associated confidence. To address this gap, we apply a machine-learning framework called conformal prediction to output a set of possible labels that contain the true identity of the unknown spectrum with a user-defined probability (e.g., 90%). Microplastic reference libraries of environmentally aged and pristine polymeric materials, as well as unknown environmental plastic spectra, were employed to illustrate the benefits of this approach when used with two similarity metrics to compute HQI. We present an adaptable workflow using our open-access code to ensure spectral matching confidence for the microplastic community, reducing manual inspection of spectral matches and enhancing the robustness of quantification in the field.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"99 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Confidence in Microplastic Spectral Identification via Conformal Prediction\",\"authors\":\"Madeline E. Clough, Eduardo Ochoa Rivera, Rebecca L. Parham, Andrew P. Ault, Paul M. Zimmerman, Anne J. McNeil, Ambuj Tewari\",\"doi\":\"10.1021/acs.est.4c05167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microplastics are an emerging pollutant of concern, with environmental observations recorded across the world. Identifying the type of microplastic is challenging due to spectral similarities among the most common polymers, necessitating methods that can confidently distinguish plastic identities. In practice, a researcher chooses the reference vibrational spectrum that is most like the unknown spectrum, where the likeness between the two spectra is expressed numerically as the hit quality index (HQI). Despite the widespread use of HQI thresholds in the literature, acceptance of a spectral label often lacks any associated confidence. To address this gap, we apply a machine-learning framework called conformal prediction to output a set of possible labels that contain the true identity of the unknown spectrum with a user-defined probability (e.g., 90%). Microplastic reference libraries of environmentally aged and pristine polymeric materials, as well as unknown environmental plastic spectra, were employed to illustrate the benefits of this approach when used with two similarity metrics to compute HQI. We present an adaptable workflow using our open-access code to ensure spectral matching confidence for the microplastic community, reducing manual inspection of spectral matches and enhancing the robustness of quantification in the field.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c05167\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c05167","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Enhancing Confidence in Microplastic Spectral Identification via Conformal Prediction
Microplastics are an emerging pollutant of concern, with environmental observations recorded across the world. Identifying the type of microplastic is challenging due to spectral similarities among the most common polymers, necessitating methods that can confidently distinguish plastic identities. In practice, a researcher chooses the reference vibrational spectrum that is most like the unknown spectrum, where the likeness between the two spectra is expressed numerically as the hit quality index (HQI). Despite the widespread use of HQI thresholds in the literature, acceptance of a spectral label often lacks any associated confidence. To address this gap, we apply a machine-learning framework called conformal prediction to output a set of possible labels that contain the true identity of the unknown spectrum with a user-defined probability (e.g., 90%). Microplastic reference libraries of environmentally aged and pristine polymeric materials, as well as unknown environmental plastic spectra, were employed to illustrate the benefits of this approach when used with two similarity metrics to compute HQI. We present an adaptable workflow using our open-access code to ensure spectral matching confidence for the microplastic community, reducing manual inspection of spectral matches and enhancing the robustness of quantification in the field.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.