José Luis Ampuero*, Alberto Anadón, Héloïse Damas, Jaâfar Ghanbaja, Sébastien Petit-Watelot, Juan-Carlos Rojas-Sánchez*, Daniel Velázquez Rodriguez, Javier Gómez, Alejandro Butera* and Luis Avilés-Félix,
{"title":"单层铁铂薄膜中的自感应自旋泵浦和反自旋霍尔效应","authors":"José Luis Ampuero*, Alberto Anadón, Héloïse Damas, Jaâfar Ghanbaja, Sébastien Petit-Watelot, Juan-Carlos Rojas-Sánchez*, Daniel Velázquez Rodriguez, Javier Gómez, Alejandro Butera* and Luis Avilés-Félix, ","doi":"10.1021/acsaelm.4c0155510.1021/acsaelm.4c01555","DOIUrl":null,"url":null,"abstract":"<p >Self-induced spin Hall effect and self-torque hold great promise in the field of spintronics, offering a path toward highly efficient spin-to-charge interconversion, a pivotal advancement for data storage, sensing devices, or unconventional computing. In this study, we investigate the spin-charge current conversion characteristics of chemically disordered ferromagnetic single FePt thin films by spin-pumping ferromagnetic resonance experiments performed on both a resonance cavity and on patterned devices. We clearly observe a self-induced signal in a single FePt layer. The sign of a single FePt spin pumping voltage signal is consistent with a typical bilayer with a positive spin Hall angle layer such as that of Pt on top of a ferromagnet (FM), substrate//FM/Pt. Structural analysis shows a composition gradient due to natural oxidation at both FePt interfaces, with the Si substrate and with the air. The FePt-thickness dependence of the self-induced charge current produced allowed us to obtain λ<sub>FePt</sub> = (1.5 ± 0.1) nm and self-induced θ<sub>self-FePt</sub> = 0.047 ± 0.003, with efficiency for reciprocal effects applications θ<sub>self-FePt</sub> × λ<sub>FePt</sub> = 0.071 nm which is comparable to that of Pt, θ<sub>SH-Pt</sub> × λ<sub>Pt</sub> = 0.2 nm. The spin pumping voltage is also observed in a symmetrical stacking, Al/FePt/Al with a lower overall efficiency. Moreover, by studying bilayer systems such as Si//FePt/Pt and Si//Pt//FePt we independently could extract the individual contributions of the external inverse spin Hall effect of Pt and the self-induced inverse spin Hall effect of FePt. Notably, this method gives consistent values of charge currents produced due to only self-induced inverse spin Hall effect in FePt layers. These results advance our understanding of spin-to-charge interconversion mechanisms in composite thin films and pave the way for the development of next-generation spintronics devices based on self-torque.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8298–8308 8298–8308"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Induced Spin Pumping and Inverse Spin Hall Effect in Single FePt Thin Films\",\"authors\":\"José Luis Ampuero*, Alberto Anadón, Héloïse Damas, Jaâfar Ghanbaja, Sébastien Petit-Watelot, Juan-Carlos Rojas-Sánchez*, Daniel Velázquez Rodriguez, Javier Gómez, Alejandro Butera* and Luis Avilés-Félix, \",\"doi\":\"10.1021/acsaelm.4c0155510.1021/acsaelm.4c01555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Self-induced spin Hall effect and self-torque hold great promise in the field of spintronics, offering a path toward highly efficient spin-to-charge interconversion, a pivotal advancement for data storage, sensing devices, or unconventional computing. In this study, we investigate the spin-charge current conversion characteristics of chemically disordered ferromagnetic single FePt thin films by spin-pumping ferromagnetic resonance experiments performed on both a resonance cavity and on patterned devices. We clearly observe a self-induced signal in a single FePt layer. The sign of a single FePt spin pumping voltage signal is consistent with a typical bilayer with a positive spin Hall angle layer such as that of Pt on top of a ferromagnet (FM), substrate//FM/Pt. Structural analysis shows a composition gradient due to natural oxidation at both FePt interfaces, with the Si substrate and with the air. The FePt-thickness dependence of the self-induced charge current produced allowed us to obtain λ<sub>FePt</sub> = (1.5 ± 0.1) nm and self-induced θ<sub>self-FePt</sub> = 0.047 ± 0.003, with efficiency for reciprocal effects applications θ<sub>self-FePt</sub> × λ<sub>FePt</sub> = 0.071 nm which is comparable to that of Pt, θ<sub>SH-Pt</sub> × λ<sub>Pt</sub> = 0.2 nm. The spin pumping voltage is also observed in a symmetrical stacking, Al/FePt/Al with a lower overall efficiency. Moreover, by studying bilayer systems such as Si//FePt/Pt and Si//Pt//FePt we independently could extract the individual contributions of the external inverse spin Hall effect of Pt and the self-induced inverse spin Hall effect of FePt. Notably, this method gives consistent values of charge currents produced due to only self-induced inverse spin Hall effect in FePt layers. These results advance our understanding of spin-to-charge interconversion mechanisms in composite thin films and pave the way for the development of next-generation spintronics devices based on self-torque.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"6 11\",\"pages\":\"8298–8308 8298–8308\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01555\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01555","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Self-Induced Spin Pumping and Inverse Spin Hall Effect in Single FePt Thin Films
Self-induced spin Hall effect and self-torque hold great promise in the field of spintronics, offering a path toward highly efficient spin-to-charge interconversion, a pivotal advancement for data storage, sensing devices, or unconventional computing. In this study, we investigate the spin-charge current conversion characteristics of chemically disordered ferromagnetic single FePt thin films by spin-pumping ferromagnetic resonance experiments performed on both a resonance cavity and on patterned devices. We clearly observe a self-induced signal in a single FePt layer. The sign of a single FePt spin pumping voltage signal is consistent with a typical bilayer with a positive spin Hall angle layer such as that of Pt on top of a ferromagnet (FM), substrate//FM/Pt. Structural analysis shows a composition gradient due to natural oxidation at both FePt interfaces, with the Si substrate and with the air. The FePt-thickness dependence of the self-induced charge current produced allowed us to obtain λFePt = (1.5 ± 0.1) nm and self-induced θself-FePt = 0.047 ± 0.003, with efficiency for reciprocal effects applications θself-FePt × λFePt = 0.071 nm which is comparable to that of Pt, θSH-Pt × λPt = 0.2 nm. The spin pumping voltage is also observed in a symmetrical stacking, Al/FePt/Al with a lower overall efficiency. Moreover, by studying bilayer systems such as Si//FePt/Pt and Si//Pt//FePt we independently could extract the individual contributions of the external inverse spin Hall effect of Pt and the self-induced inverse spin Hall effect of FePt. Notably, this method gives consistent values of charge currents produced due to only self-induced inverse spin Hall effect in FePt layers. These results advance our understanding of spin-to-charge interconversion mechanisms in composite thin films and pave the way for the development of next-generation spintronics devices based on self-torque.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico