Dong Xu, Tingting Bai*, Lin Yang, Yuyu Zhou, Bin Chen, Haifeng Xu, Yongze Song*, Yuan Yuan, Yuanzheng Cui, Lin Meng, Ziqian Xia, Min Chen, Zhenci Xu, Peng Zhao, Guihua Dong, Lei Zhang, Jiacheng Zhao, Wanben Wu, Wei Wang, Liu Zhao, Jie Cheng* and Philippe Ciais*,
{"title":"量化中国生态修复项目带动的城市绿化降温效应","authors":"Dong Xu, Tingting Bai*, Lin Yang, Yuyu Zhou, Bin Chen, Haifeng Xu, Yongze Song*, Yuan Yuan, Yuanzheng Cui, Lin Meng, Ziqian Xia, Min Chen, Zhenci Xu, Peng Zhao, Guihua Dong, Lei Zhang, Jiacheng Zhao, Wanben Wu, Wei Wang, Liu Zhao, Jie Cheng* and Philippe Ciais*, ","doi":"10.1021/acs.est.4c1031410.1021/acs.est.4c10314","DOIUrl":null,"url":null,"abstract":"<p >Urban greening (UG) affects local climate by altering surface energy balance, while long-term UG cooling potential, patterns, and contribution to curbing urban warming remain unclear. Here, we designed an novel statistical model to evaluate the cooling potential of UG (CPUG) and created the first CPUG map for China. By exploring the trends in observed and simulated urban surface temperatures (UST), we quantified the CPUG of 0.20 K over the past two decades, which slowed down the warming trend by 14.17% in Chinese cities. We found that the CPUG varied significantly between the urban core and sprawl areas. Specifically, the CPUG in the urban core was approximately 1.01 K, and it contributed to curbing urban warming by 56.08%, which was more than 7.2 times higher than in the sprawl areas, where the CPUG was only 0.14 K and contributed to curbing urban warming by 9.93%. We further revealed that urbanization and major ecological restoration projects are the key factors influencing CPUG, emphasizing the need for anthropogenic vegetation management to curb urban warming. The proposed model in this study provides a powerful tool for quantitatively assessing the impact of long-term UG trends on urban warming. The results of the study are an important reference for building climate-adaptive cities.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 47","pages":"20990–21001 20990–21001"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Cooling Effect of Urban Greening Driven by Ecological Restoration Projects in China\",\"authors\":\"Dong Xu, Tingting Bai*, Lin Yang, Yuyu Zhou, Bin Chen, Haifeng Xu, Yongze Song*, Yuan Yuan, Yuanzheng Cui, Lin Meng, Ziqian Xia, Min Chen, Zhenci Xu, Peng Zhao, Guihua Dong, Lei Zhang, Jiacheng Zhao, Wanben Wu, Wei Wang, Liu Zhao, Jie Cheng* and Philippe Ciais*, \",\"doi\":\"10.1021/acs.est.4c1031410.1021/acs.est.4c10314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Urban greening (UG) affects local climate by altering surface energy balance, while long-term UG cooling potential, patterns, and contribution to curbing urban warming remain unclear. Here, we designed an novel statistical model to evaluate the cooling potential of UG (CPUG) and created the first CPUG map for China. By exploring the trends in observed and simulated urban surface temperatures (UST), we quantified the CPUG of 0.20 K over the past two decades, which slowed down the warming trend by 14.17% in Chinese cities. We found that the CPUG varied significantly between the urban core and sprawl areas. Specifically, the CPUG in the urban core was approximately 1.01 K, and it contributed to curbing urban warming by 56.08%, which was more than 7.2 times higher than in the sprawl areas, where the CPUG was only 0.14 K and contributed to curbing urban warming by 9.93%. We further revealed that urbanization and major ecological restoration projects are the key factors influencing CPUG, emphasizing the need for anthropogenic vegetation management to curb urban warming. The proposed model in this study provides a powerful tool for quantitatively assessing the impact of long-term UG trends on urban warming. The results of the study are an important reference for building climate-adaptive cities.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"58 47\",\"pages\":\"20990–21001 20990–21001\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c10314\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c10314","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Quantifying the Cooling Effect of Urban Greening Driven by Ecological Restoration Projects in China
Urban greening (UG) affects local climate by altering surface energy balance, while long-term UG cooling potential, patterns, and contribution to curbing urban warming remain unclear. Here, we designed an novel statistical model to evaluate the cooling potential of UG (CPUG) and created the first CPUG map for China. By exploring the trends in observed and simulated urban surface temperatures (UST), we quantified the CPUG of 0.20 K over the past two decades, which slowed down the warming trend by 14.17% in Chinese cities. We found that the CPUG varied significantly between the urban core and sprawl areas. Specifically, the CPUG in the urban core was approximately 1.01 K, and it contributed to curbing urban warming by 56.08%, which was more than 7.2 times higher than in the sprawl areas, where the CPUG was only 0.14 K and contributed to curbing urban warming by 9.93%. We further revealed that urbanization and major ecological restoration projects are the key factors influencing CPUG, emphasizing the need for anthropogenic vegetation management to curb urban warming. The proposed model in this study provides a powerful tool for quantitatively assessing the impact of long-term UG trends on urban warming. The results of the study are an important reference for building climate-adaptive cities.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.