{"title":"通过马尔可夫状态建模对 MD 中 T4 L99A 的离散结合构象进行基于动力学的状态定义","authors":"Chris Zhang, Meghan Osato, David L Mobley","doi":"10.1021/acs.jcim.4c01364","DOIUrl":null,"url":null,"abstract":"<p><p>As a model system, the binding pocket of the L99A mutant of T4 lysozyme has been the subject of numerous computational free energy studies. However, previous studies have failed to fully sample and account for the observed changes in the binding pocket of T4 L99A upon binding of a congeneric ligand series, limiting the accuracy of results. In this work, we resolve the closed, intermediate, and open states for T4 L99A previously reported in experiment in MD and establish definitions for these states based on the dynamics of the system. From this analysis, we arrive at two primary conclusions. First, assignment of simulation trajectories into discrete states should not be done simply based on RMSD to crystal structures as this can result in misassignment of states. Second, the different metastable conformations studied here need to be carefully treated, as we estimate the time scales for conformational interconversion to be on the order of 10<sup>2</sup> to 10<sup>3</sup> ns─far longer than time scales for typical binding calculations. We conclude with a discussion on the need to develop enhanced sampling methods to generally account for significant changes in protein conformation due to relatively small ligand perturbations.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"8870-8879"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics-Based State Definitions for Discrete Binding Conformations of T4 L99A in MD via Markov State Modeling.\",\"authors\":\"Chris Zhang, Meghan Osato, David L Mobley\",\"doi\":\"10.1021/acs.jcim.4c01364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a model system, the binding pocket of the L99A mutant of T4 lysozyme has been the subject of numerous computational free energy studies. However, previous studies have failed to fully sample and account for the observed changes in the binding pocket of T4 L99A upon binding of a congeneric ligand series, limiting the accuracy of results. In this work, we resolve the closed, intermediate, and open states for T4 L99A previously reported in experiment in MD and establish definitions for these states based on the dynamics of the system. From this analysis, we arrive at two primary conclusions. First, assignment of simulation trajectories into discrete states should not be done simply based on RMSD to crystal structures as this can result in misassignment of states. Second, the different metastable conformations studied here need to be carefully treated, as we estimate the time scales for conformational interconversion to be on the order of 10<sup>2</sup> to 10<sup>3</sup> ns─far longer than time scales for typical binding calculations. We conclude with a discussion on the need to develop enhanced sampling methods to generally account for significant changes in protein conformation due to relatively small ligand perturbations.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"8870-8879\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01364\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Kinetics-Based State Definitions for Discrete Binding Conformations of T4 L99A in MD via Markov State Modeling.
As a model system, the binding pocket of the L99A mutant of T4 lysozyme has been the subject of numerous computational free energy studies. However, previous studies have failed to fully sample and account for the observed changes in the binding pocket of T4 L99A upon binding of a congeneric ligand series, limiting the accuracy of results. In this work, we resolve the closed, intermediate, and open states for T4 L99A previously reported in experiment in MD and establish definitions for these states based on the dynamics of the system. From this analysis, we arrive at two primary conclusions. First, assignment of simulation trajectories into discrete states should not be done simply based on RMSD to crystal structures as this can result in misassignment of states. Second, the different metastable conformations studied here need to be carefully treated, as we estimate the time scales for conformational interconversion to be on the order of 102 to 103 ns─far longer than time scales for typical binding calculations. We conclude with a discussion on the need to develop enhanced sampling methods to generally account for significant changes in protein conformation due to relatively small ligand perturbations.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.