基于微气泡制造高灵敏度压力传感器用弹性多孔离子凝胶。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-11-26 DOI:10.1038/s41378-024-00780-8
Ziwei Yang, Jingxiao Wang, Xiao Wan, Hongcheng Xu, Chuanyu Zhang, Xiaoke Lu, Weixuan Jing, Chuanfei Guo, Xueyong Wei
{"title":"基于微气泡制造高灵敏度压力传感器用弹性多孔离子凝胶。","authors":"Ziwei Yang, Jingxiao Wang, Xiao Wan, Hongcheng Xu, Chuanyu Zhang, Xiaoke Lu, Weixuan Jing, Chuanfei Guo, Xueyong Wei","doi":"10.1038/s41378-024-00780-8","DOIUrl":null,"url":null,"abstract":"<p><p>High-sensitivity flexible pressure sensors have obtained extensive attention because of their expanding applications in e-skins and wearable medical devices for various disease diagnoses. As the representative candidate for these sensors, the iontronic microstructure has been widely proven to enhance sensation behaviors such as the sensitivity and limits of detection. However, the fast and tunable fabrication of ionic-porous sensing elastomers remains challenging because of the current template-dissolved or 3D printing methods. Here, we report a microbubble-based fabrication process that enables microporous and resilient-compliance ionogels for high-sensitivity pressure sensors. Periodic motion sliding results in a relative velocity between the imported airflow and the fluid solution, converts the airflow to microbubbles in the high-viscosity ionic fluid and promptly solidifies the fluid into a porous ionogel under ultraviolet exposure. The ultrahigh porosity of up to 95% endows the porous ionogel with superelasticity and a Young's modulus near 7 kPa. Due to the superelastic compliance and iontronic electrical double-layer effect, the porous ionogel packaged into two electrodes endows the pressure sensor with high sensitivity (684.4 kPa<sup>-1</sup>) over an ultrabroad range (~1 MPa) and a high-pressure resolution of 0.46%. Furthermore, the pressure sensor successfully captures high-yield broad-range signals from the fingertip low-pressure pulses (<1 kPa) to foot high-pressure activities (>500 kPa), even the grasping force of soft machine hands via an array-scanning circuit during object recognition. This microbubble-based fabrication process for porous ionogels paves the way for designing wearable sensors or permeable electronics to monitor and diagnose various diseases.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"177"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589707/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbubble-based fabrication of resilient porous ionogels for high-sensitivity pressure sensors.\",\"authors\":\"Ziwei Yang, Jingxiao Wang, Xiao Wan, Hongcheng Xu, Chuanyu Zhang, Xiaoke Lu, Weixuan Jing, Chuanfei Guo, Xueyong Wei\",\"doi\":\"10.1038/s41378-024-00780-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-sensitivity flexible pressure sensors have obtained extensive attention because of their expanding applications in e-skins and wearable medical devices for various disease diagnoses. As the representative candidate for these sensors, the iontronic microstructure has been widely proven to enhance sensation behaviors such as the sensitivity and limits of detection. However, the fast and tunable fabrication of ionic-porous sensing elastomers remains challenging because of the current template-dissolved or 3D printing methods. Here, we report a microbubble-based fabrication process that enables microporous and resilient-compliance ionogels for high-sensitivity pressure sensors. Periodic motion sliding results in a relative velocity between the imported airflow and the fluid solution, converts the airflow to microbubbles in the high-viscosity ionic fluid and promptly solidifies the fluid into a porous ionogel under ultraviolet exposure. The ultrahigh porosity of up to 95% endows the porous ionogel with superelasticity and a Young's modulus near 7 kPa. Due to the superelastic compliance and iontronic electrical double-layer effect, the porous ionogel packaged into two electrodes endows the pressure sensor with high sensitivity (684.4 kPa<sup>-1</sup>) over an ultrabroad range (~1 MPa) and a high-pressure resolution of 0.46%. Furthermore, the pressure sensor successfully captures high-yield broad-range signals from the fingertip low-pressure pulses (<1 kPa) to foot high-pressure activities (>500 kPa), even the grasping force of soft machine hands via an array-scanning circuit during object recognition. This microbubble-based fabrication process for porous ionogels paves the way for designing wearable sensors or permeable electronics to monitor and diagnose various diseases.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"177\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00780-8\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00780-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

高灵敏度柔性压力传感器在电子皮肤和用于各种疾病诊断的可穿戴医疗设备中的应用不断扩大,因而受到广泛关注。作为这些传感器的代表性候选材料,离子电子微结构已被广泛证明可以提高灵敏度和检测极限等传感性能。然而,由于目前的模板溶解或三维打印方法,快速、可调地制造离子多孔传感弹性体仍具有挑战性。在此,我们报告了一种基于微气泡的制造工艺,该工艺可制造出用于高灵敏度压力传感器的微孔和弹性相容离子凝胶。周期性运动滑动会导致输入气流与流体溶液之间产生相对速度,从而将气流转化为高粘度离子流体中的微气泡,并在紫外线照射下迅速将流体凝固成多孔离子凝胶。高达 95% 的超高孔隙率使多孔离子凝胶具有超弹性和接近 7 kPa 的杨氏模量。由于超弹性顺应性和离子电子双层效应,封装成两个电极的多孔离子凝胶使压力传感器在超宽范围(约 1 兆帕)内具有高灵敏度(684.4 千帕-1)和 0.46% 的高压分辨率。此外,该压力传感器还能成功捕捉来自指尖低压脉冲(500 kPa)的高产率宽范围信号,甚至在物体识别过程中通过阵列扫描电路捕捉软机器手的抓取力。这种基于微气泡的多孔离子凝胶制造工艺为设计用于监测和诊断各种疾病的可穿戴传感器或可渗透电子器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbubble-based fabrication of resilient porous ionogels for high-sensitivity pressure sensors.

High-sensitivity flexible pressure sensors have obtained extensive attention because of their expanding applications in e-skins and wearable medical devices for various disease diagnoses. As the representative candidate for these sensors, the iontronic microstructure has been widely proven to enhance sensation behaviors such as the sensitivity and limits of detection. However, the fast and tunable fabrication of ionic-porous sensing elastomers remains challenging because of the current template-dissolved or 3D printing methods. Here, we report a microbubble-based fabrication process that enables microporous and resilient-compliance ionogels for high-sensitivity pressure sensors. Periodic motion sliding results in a relative velocity between the imported airflow and the fluid solution, converts the airflow to microbubbles in the high-viscosity ionic fluid and promptly solidifies the fluid into a porous ionogel under ultraviolet exposure. The ultrahigh porosity of up to 95% endows the porous ionogel with superelasticity and a Young's modulus near 7 kPa. Due to the superelastic compliance and iontronic electrical double-layer effect, the porous ionogel packaged into two electrodes endows the pressure sensor with high sensitivity (684.4 kPa-1) over an ultrabroad range (~1 MPa) and a high-pressure resolution of 0.46%. Furthermore, the pressure sensor successfully captures high-yield broad-range signals from the fingertip low-pressure pulses (<1 kPa) to foot high-pressure activities (>500 kPa), even the grasping force of soft machine hands via an array-scanning circuit during object recognition. This microbubble-based fabrication process for porous ionogels paves the way for designing wearable sensors or permeable electronics to monitor and diagnose various diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
A low-cost printed circuit board-based centrifugal microfluidic platform for dielectrophoresis. Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation. Controllable tip exposure of ultramicroelectrodes coated by diamond-like carbon via direct microplasma jet for enhanced stability and fidelity in single-cell recording. Theoretical and experimental investigations of the CMOS compatible Pirani gauges with a temperature compensation model. An intelligent humidity sensing system for human behavior recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1