{"title":"基于 CT 的深度学习分割肿瘤并预测结直肠癌患者的微卫星不稳定性:一项多中心队列研究。","authors":"Weicui Chen, Kaiyi Zheng, Wenjing Yuan, Ziqi Jia, Yuankui Wu, Xiaohui Duan, Wei Yang, Zhibo Wen, Liming Zhong, Xian Liu","doi":"10.1007/s11547-024-01909-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop and validate deep learning (DL) models using preoperative contrast-enhanced CT images for tumor auto-segmentation and microsatellite instability (MSI) prediction in colorectal cancer (CRC).</p><p><strong>Materials and methods: </strong>Patients with CRC who underwent surgery or biopsy between January 2018 and April 2023 were retrospectively enrolled. Mismatch repair protein expression was determined via immunohistochemistry or fluorescence multiplex polymerase chain reaction-capillary electrophoresis. Manually delineated tumor contours using arterial and venous phase CT images by three abdominal radiologists are served as ground truth. Tumor auto-segmentation used nnU-Net. MSI prediction employed ViT or convolutional neural networks models, trained and validated with arterial and venous phase images (image model) or combined clinical-pathological factors (combined model). The segmentation model was evaluated using patch coverage ratio, Dice coefficient, recall, precision, and F1-score. The predictive models' efficacy was assessed using areas under the curves and decision curve analysis.</p><p><strong>Results: </strong>Overall, 2180 patients (median age: 61 years ± 17 [SD]; 1285 males) were divided into training (n = 1159), validation (n = 289), and independent external test (n = 732) groups. High-level MSI status was present in 435 patients (20%). In the external test set, the segmentation model performed well in the arterial phase, with patch coverage ratio, Dice coefficient, recall, precision, and F1-score values of 0.87, 0.71, 0.72, 0.74, and 0.71, respectively. For MSI prediction, the combined models outperformed the clinical model (AUC = 0.83 and 0.82 vs 0.67, p < 0.001) and two image models (AUC = 0.75 and 0.77, p < 0.001). Decision curve analysis confirmed the higher net benefit of the combined model compared to the other models across probability thresholds ranging from 0.1 to 0.45.</p><p><strong>Conclusion: </strong>DL enhances tumor segmentation efficiency and, when integrated with contrast-enhanced CT and clinicopathological factors, exhibits good diagnostic performance in predicting MSI in CRC.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CT-based deep learning for segmenting tumors and predicting microsatellite instability in patients with colorectal cancers: a multicenter cohort study.\",\"authors\":\"Weicui Chen, Kaiyi Zheng, Wenjing Yuan, Ziqi Jia, Yuankui Wu, Xiaohui Duan, Wei Yang, Zhibo Wen, Liming Zhong, Xian Liu\",\"doi\":\"10.1007/s11547-024-01909-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop and validate deep learning (DL) models using preoperative contrast-enhanced CT images for tumor auto-segmentation and microsatellite instability (MSI) prediction in colorectal cancer (CRC).</p><p><strong>Materials and methods: </strong>Patients with CRC who underwent surgery or biopsy between January 2018 and April 2023 were retrospectively enrolled. Mismatch repair protein expression was determined via immunohistochemistry or fluorescence multiplex polymerase chain reaction-capillary electrophoresis. Manually delineated tumor contours using arterial and venous phase CT images by three abdominal radiologists are served as ground truth. Tumor auto-segmentation used nnU-Net. MSI prediction employed ViT or convolutional neural networks models, trained and validated with arterial and venous phase images (image model) or combined clinical-pathological factors (combined model). The segmentation model was evaluated using patch coverage ratio, Dice coefficient, recall, precision, and F1-score. The predictive models' efficacy was assessed using areas under the curves and decision curve analysis.</p><p><strong>Results: </strong>Overall, 2180 patients (median age: 61 years ± 17 [SD]; 1285 males) were divided into training (n = 1159), validation (n = 289), and independent external test (n = 732) groups. High-level MSI status was present in 435 patients (20%). In the external test set, the segmentation model performed well in the arterial phase, with patch coverage ratio, Dice coefficient, recall, precision, and F1-score values of 0.87, 0.71, 0.72, 0.74, and 0.71, respectively. For MSI prediction, the combined models outperformed the clinical model (AUC = 0.83 and 0.82 vs 0.67, p < 0.001) and two image models (AUC = 0.75 and 0.77, p < 0.001). Decision curve analysis confirmed the higher net benefit of the combined model compared to the other models across probability thresholds ranging from 0.1 to 0.45.</p><p><strong>Conclusion: </strong>DL enhances tumor segmentation efficiency and, when integrated with contrast-enhanced CT and clinicopathological factors, exhibits good diagnostic performance in predicting MSI in CRC.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-024-01909-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-024-01909-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A CT-based deep learning for segmenting tumors and predicting microsatellite instability in patients with colorectal cancers: a multicenter cohort study.
Purpose: To develop and validate deep learning (DL) models using preoperative contrast-enhanced CT images for tumor auto-segmentation and microsatellite instability (MSI) prediction in colorectal cancer (CRC).
Materials and methods: Patients with CRC who underwent surgery or biopsy between January 2018 and April 2023 were retrospectively enrolled. Mismatch repair protein expression was determined via immunohistochemistry or fluorescence multiplex polymerase chain reaction-capillary electrophoresis. Manually delineated tumor contours using arterial and venous phase CT images by three abdominal radiologists are served as ground truth. Tumor auto-segmentation used nnU-Net. MSI prediction employed ViT or convolutional neural networks models, trained and validated with arterial and venous phase images (image model) or combined clinical-pathological factors (combined model). The segmentation model was evaluated using patch coverage ratio, Dice coefficient, recall, precision, and F1-score. The predictive models' efficacy was assessed using areas under the curves and decision curve analysis.
Results: Overall, 2180 patients (median age: 61 years ± 17 [SD]; 1285 males) were divided into training (n = 1159), validation (n = 289), and independent external test (n = 732) groups. High-level MSI status was present in 435 patients (20%). In the external test set, the segmentation model performed well in the arterial phase, with patch coverage ratio, Dice coefficient, recall, precision, and F1-score values of 0.87, 0.71, 0.72, 0.74, and 0.71, respectively. For MSI prediction, the combined models outperformed the clinical model (AUC = 0.83 and 0.82 vs 0.67, p < 0.001) and two image models (AUC = 0.75 and 0.77, p < 0.001). Decision curve analysis confirmed the higher net benefit of the combined model compared to the other models across probability thresholds ranging from 0.1 to 0.45.
Conclusion: DL enhances tumor segmentation efficiency and, when integrated with contrast-enhanced CT and clinicopathological factors, exhibits good diagnostic performance in predicting MSI in CRC.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.