释放阿尔茨海默病临床试验中的认知分析潜力:研究用于分析新型测量突变设计数据的层次线性模型。

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2024-12-30 Epub Date: 2024-11-25 DOI:10.1002/sim.10292
Guoqiao Wang, Jason Hassenstab, Yan Li, Andrew J Aschenbrenner, Eric M McDade, Jorge Llibre-Guerra, Randall J Bateman, Chengjie Xiong
{"title":"释放阿尔茨海默病临床试验中的认知分析潜力:研究用于分析新型测量突变设计数据的层次线性模型。","authors":"Guoqiao Wang, Jason Hassenstab, Yan Li, Andrew J Aschenbrenner, Eric M McDade, Jorge Llibre-Guerra, Randall J Bateman, Chengjie Xiong","doi":"10.1002/sim.10292","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement burst designs typically administer brief cognitive tests four times per day for 1 week, resulting in a maximum of 28 data points per week per test for every 6 months. In Alzheimer's disease clinical trials, utilizing measurement burst designs holds great promise for boosting statistical power by collecting huge amount of data. However, appropriate methods for analyzing these complex datasets are not well investigated. Furthermore, the large amount of burst design data also poses tremendous challenges for traditional computational procedures such as SAS mixed or Nlmixed. We propose to analyze burst design data using novel hierarchical linear mixed effects models or hierarchical mixed models for repeated measures. Through simulations and real-world data applications using the novel SAS procedure Hpmixed, we demonstrate these hierarchical models' efficiency over traditional models. Our sample simulation and analysis code can serve as a catalyst to facilitate the methodology development for burst design data.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5898-5910"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Cognitive Analysis Potential in Alzheimer's Disease Clinical Trials: Investigating Hierarchical Linear Models for Analyzing Novel Measurement Burst Design Data.\",\"authors\":\"Guoqiao Wang, Jason Hassenstab, Yan Li, Andrew J Aschenbrenner, Eric M McDade, Jorge Llibre-Guerra, Randall J Bateman, Chengjie Xiong\",\"doi\":\"10.1002/sim.10292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measurement burst designs typically administer brief cognitive tests four times per day for 1 week, resulting in a maximum of 28 data points per week per test for every 6 months. In Alzheimer's disease clinical trials, utilizing measurement burst designs holds great promise for boosting statistical power by collecting huge amount of data. However, appropriate methods for analyzing these complex datasets are not well investigated. Furthermore, the large amount of burst design data also poses tremendous challenges for traditional computational procedures such as SAS mixed or Nlmixed. We propose to analyze burst design data using novel hierarchical linear mixed effects models or hierarchical mixed models for repeated measures. Through simulations and real-world data applications using the novel SAS procedure Hpmixed, we demonstrate these hierarchical models' efficiency over traditional models. Our sample simulation and analysis code can serve as a catalyst to facilitate the methodology development for burst design data.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"5898-5910\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10292\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

测量突变设计通常每天进行四次简短的认知测试,每次测试持续一周,每六个月每周最多可获得 28 个数据点。在阿尔茨海默病临床试验中,利用测量突变设计通过收集大量数据来提高统计能力大有可为。然而,分析这些复杂数据集的适当方法还没有得到很好的研究。此外,大量的突发设计数据也给 SAS 混合或 Nlmixed 等传统计算程序带来了巨大挑战。我们建议使用新型分层线性混合效应模型或重复测量分层混合模型来分析突发设计数据。通过使用新型 SAS 程序 Hpmixed 进行模拟和实际数据应用,我们证明了这些层次模型比传统模型更高效。我们的模拟和分析代码样本可作为促进突发设计数据方法开发的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking Cognitive Analysis Potential in Alzheimer's Disease Clinical Trials: Investigating Hierarchical Linear Models for Analyzing Novel Measurement Burst Design Data.

Measurement burst designs typically administer brief cognitive tests four times per day for 1 week, resulting in a maximum of 28 data points per week per test for every 6 months. In Alzheimer's disease clinical trials, utilizing measurement burst designs holds great promise for boosting statistical power by collecting huge amount of data. However, appropriate methods for analyzing these complex datasets are not well investigated. Furthermore, the large amount of burst design data also poses tremendous challenges for traditional computational procedures such as SAS mixed or Nlmixed. We propose to analyze burst design data using novel hierarchical linear mixed effects models or hierarchical mixed models for repeated measures. Through simulations and real-world data applications using the novel SAS procedure Hpmixed, we demonstrate these hierarchical models' efficiency over traditional models. Our sample simulation and analysis code can serve as a catalyst to facilitate the methodology development for burst design data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
Regression-A Means, Not an End. Causal Mediation Analysis: A Summary-Data Mendelian Randomization Approach. Optimal Control of Directional False Discovery Rates in Large-Scale Testing. scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation. Time-Dependent ROC Curve for Multiple Longitudinal Biomarkers and Its Application in Diagnosing Cardiovascular Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1