基于模型的治疗-共变因素交互检验最佳随机化程序。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-11-25 DOI:10.1177/09622802241298703
Zhongqiang Liu
{"title":"基于模型的治疗-共变因素交互检验最佳随机化程序。","authors":"Zhongqiang Liu","doi":"10.1177/09622802241298703","DOIUrl":null,"url":null,"abstract":"<p><p>Linear models are extensively used in the analysis of clinical trials. However, required model assumptions (e.g. homoscedasticity) may not be satisfied in practice, resulting in low power of treatment-covariate interaction tests. Various interaction tests have been proposed to improve the efficiency of detecting differences in treatment-covariate interactions. Aiming to fundamentally improve the power of treatment-covariate interaction tests, for heteroscedasticity of treatment responses, we develop a model-based optimal randomization procedure, referred to as model-based Neyman allocation (MNA) in this article. The derived limiting allocation proportion indicates that the procedure MNA is a generalization of response-adaptive randomization targeting Neyman allocation (RAR-NA). In theory, we demonstrate that the procedure MNA can maximize the power of treatment-covariate interaction tests. The issue of sample size estimation is also addressed. Simulation studies show, in the framework of the heteroscedastic linear model, compared with Pocock and Simon's minimization method and RAR-NA, the procedure MNA has the greatest power of tests for both systematic effects and treatment-covariate interactions, even under model misspecification. Finally, the efficiency of the procedure MNA is illustrated by a hypothetical case study based on a real schizophrenia clinical trial.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241298703"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based optimal randomization procedure for treatment-covariate interaction tests.\",\"authors\":\"Zhongqiang Liu\",\"doi\":\"10.1177/09622802241298703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Linear models are extensively used in the analysis of clinical trials. However, required model assumptions (e.g. homoscedasticity) may not be satisfied in practice, resulting in low power of treatment-covariate interaction tests. Various interaction tests have been proposed to improve the efficiency of detecting differences in treatment-covariate interactions. Aiming to fundamentally improve the power of treatment-covariate interaction tests, for heteroscedasticity of treatment responses, we develop a model-based optimal randomization procedure, referred to as model-based Neyman allocation (MNA) in this article. The derived limiting allocation proportion indicates that the procedure MNA is a generalization of response-adaptive randomization targeting Neyman allocation (RAR-NA). In theory, we demonstrate that the procedure MNA can maximize the power of treatment-covariate interaction tests. The issue of sample size estimation is also addressed. Simulation studies show, in the framework of the heteroscedastic linear model, compared with Pocock and Simon's minimization method and RAR-NA, the procedure MNA has the greatest power of tests for both systematic effects and treatment-covariate interactions, even under model misspecification. Finally, the efficiency of the procedure MNA is illustrated by a hypothetical case study based on a real schizophrenia clinical trial.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802241298703\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241298703\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241298703","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

线性模型广泛应用于临床试验分析。然而,在实践中可能无法满足所需的模型假设(如同方差),从而导致治疗-变量交互作用检验的功率较低。为了提高检测治疗-协变量交互作用差异的效率,人们提出了各种交互作用检验方法。为了从根本上提高治疗-协变量交互检验的功率,针对治疗反应的异方差性,我们开发了一种基于模型的最优随机化程序,本文称之为基于模型的奈曼分配(MNA)。推导出的极限分配比例表明,MNA 程序是以奈曼分配为目标的反应自适应随机化(RAR-NA)的一般化。从理论上讲,我们证明了 MNA 程序可以最大限度地提高处理-变量交互检验的功率。我们还讨论了样本量估计问题。模拟研究表明,在异方差线性模型的框架下,与 Pocock 和 Simon 的最小化方法以及 RAR-NA 相比,即使在模型失当的情况下,MNA 程序对系统效应和处理-协变量交互作用的检验都具有最大的功率。最后,我们通过一个基于真实精神分裂症临床试验的假设案例研究来说明 MNA 程序的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-based optimal randomization procedure for treatment-covariate interaction tests.

Linear models are extensively used in the analysis of clinical trials. However, required model assumptions (e.g. homoscedasticity) may not be satisfied in practice, resulting in low power of treatment-covariate interaction tests. Various interaction tests have been proposed to improve the efficiency of detecting differences in treatment-covariate interactions. Aiming to fundamentally improve the power of treatment-covariate interaction tests, for heteroscedasticity of treatment responses, we develop a model-based optimal randomization procedure, referred to as model-based Neyman allocation (MNA) in this article. The derived limiting allocation proportion indicates that the procedure MNA is a generalization of response-adaptive randomization targeting Neyman allocation (RAR-NA). In theory, we demonstrate that the procedure MNA can maximize the power of treatment-covariate interaction tests. The issue of sample size estimation is also addressed. Simulation studies show, in the framework of the heteroscedastic linear model, compared with Pocock and Simon's minimization method and RAR-NA, the procedure MNA has the greatest power of tests for both systematic effects and treatment-covariate interactions, even under model misspecification. Finally, the efficiency of the procedure MNA is illustrated by a hypothetical case study based on a real schizophrenia clinical trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
An optimal exact confidence interval for the difference of two independent binomial proportions. Covariate-adjusted response-adaptive designs for semiparametric survival models. Model-based optimal randomization procedure for treatment-covariate interaction tests. LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1