Ia 期乳腺癌的亚型特异性检测:整合拉曼光谱、机器学习和液体活检,实现个性化诊断。

Kevin Saruni Tipatet, Katie Hanna, Liam Davison-Gates, Mario Kerst, Andrew Downes
{"title":"Ia 期乳腺癌的亚型特异性检测:整合拉曼光谱、机器学习和液体活检,实现个性化诊断。","authors":"Kevin Saruni Tipatet, Katie Hanna, Liam Davison-Gates, Mario Kerst, Andrew Downes","doi":"10.1002/jbio.202400427","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the integration of Raman spectroscopy (RS) with machine learning for the early detection and subtyping of breast cancer using blood plasma samples. We performed detailed spectral analyses, identifying significant spectral patterns associated with cancer biomarkers. Our findings demonstrate the potential for classifying the four major subtypes of breast cancer at stage Ia with an average sensitivity and specificity of 90% and 95%, respectively, and a cross-validated macro-averaged area under the curve (AUC) of 0.98. This research highlights efforts to integrate vibrational spectroscopy with machine learning, enhancing cancer diagnostics through a non-invasive, personalised approach for early detection and monitoring disease progression. This study is the first of its kind to utilise RS and machine learning to classify the four major breast cancer subtypes at stage Ia.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400427"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics.\",\"authors\":\"Kevin Saruni Tipatet, Katie Hanna, Liam Davison-Gates, Mario Kerst, Andrew Downes\",\"doi\":\"10.1002/jbio.202400427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the integration of Raman spectroscopy (RS) with machine learning for the early detection and subtyping of breast cancer using blood plasma samples. We performed detailed spectral analyses, identifying significant spectral patterns associated with cancer biomarkers. Our findings demonstrate the potential for classifying the four major subtypes of breast cancer at stage Ia with an average sensitivity and specificity of 90% and 95%, respectively, and a cross-validated macro-averaged area under the curve (AUC) of 0.98. This research highlights efforts to integrate vibrational spectroscopy with machine learning, enhancing cancer diagnostics through a non-invasive, personalised approach for early detection and monitoring disease progression. This study is the first of its kind to utilise RS and machine learning to classify the four major breast cancer subtypes at stage Ia.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何将拉曼光谱(RS)与机器学习相结合,利用血浆样本对乳腺癌进行早期检测和亚型分类。我们进行了详细的光谱分析,确定了与癌症生物标志物相关的重要光谱模式。我们的研究结果表明了在 Ia 期对四种主要乳腺癌亚型进行分类的潜力,平均灵敏度和特异度分别为 90% 和 95%,交叉验证的宏观平均曲线下面积 (AUC) 为 0.98。这项研究凸显了将振动光谱与机器学习相结合的努力,通过一种无创、个性化的方法来早期检测和监测疾病进展,从而提高癌症诊断水平。这项研究是同类研究中首次利用 RS 和机器学习对 Ia 期的四种主要乳腺癌亚型进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics.

This study explores the integration of Raman spectroscopy (RS) with machine learning for the early detection and subtyping of breast cancer using blood plasma samples. We performed detailed spectral analyses, identifying significant spectral patterns associated with cancer biomarkers. Our findings demonstrate the potential for classifying the four major subtypes of breast cancer at stage Ia with an average sensitivity and specificity of 90% and 95%, respectively, and a cross-validated macro-averaged area under the curve (AUC) of 0.98. This research highlights efforts to integrate vibrational spectroscopy with machine learning, enhancing cancer diagnostics through a non-invasive, personalised approach for early detection and monitoring disease progression. This study is the first of its kind to utilise RS and machine learning to classify the four major breast cancer subtypes at stage Ia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1550 Nm Optical Coherence Tomography for In Vivo Deep Brain Cerebral Blood Flow Imaging. Clinical Effect Analysis and Prognostic Factors of Photodynamic Therapy for Cervical Precancerous Lesions. Texture Analysis of Fibrous Meningioma Using Label-Free Multiphoton Microscopy. Detecting Collagen by Machine Learning Improved Photoacoustic Spectral Analysis for Breast Cancer Diagnostics: Feasibility Studies With Murine Models. Effects of 1267 nm Illumination on Microcirculation Regulatory Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1