tRNA甲基转移酶Mettl1通过翻译调节控制酮体生成,并在心肌细胞成熟过程中驱动代谢重编程。

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Nature cardiovascular research Pub Date : 2024-11-25 DOI:10.1038/s44161-024-00565-2
Tailai Du, Yanchuang Han, Hui Han, Ting Xu, Youchen Yan, Jialing Wu, Yan Li, Chen Liu, Xinxue Liao, Yugang Dong, Demeng Chen, Jingsong Ou, Shuibin Lin, Zhan-Peng Huang
{"title":"tRNA甲基转移酶Mettl1通过翻译调节控制酮体生成,并在心肌细胞成熟过程中驱动代谢重编程。","authors":"Tailai Du, Yanchuang Han, Hui Han, Ting Xu, Youchen Yan, Jialing Wu, Yan Li, Chen Liu, Xinxue Liao, Yugang Dong, Demeng Chen, Jingsong Ou, Shuibin Lin, Zhan-Peng Huang","doi":"10.1038/s44161-024-00565-2","DOIUrl":null,"url":null,"abstract":"After birth, the heart undergoes a shift in energy metabolism and cytoarchitecture to enhance efficient energy production and cardiac contraction, which is essential for postnatal development and growth. However, the precise mechanisms regulating this process remain elusive. Here we show that the RNA modification enzyme Mettl1 is a critical regulator of postnatal metabolic reprogramming and cardiomyocyte maturation in mice, primarily through its influence on the translation of the rate-limiting ketogenesis enzyme Hmgcs2. Our findings reveal that ketogenesis is vital for the postnatal transition of fuel from glucose to fatty acids in cardiomyocytes, achieved by modulating tricarboxylic acid cycle–related enzymatic activity via lysine β-hydroxybutyrylation protein modification. Loss of Mettl1 results in aberrant metabolic reprogramming and cardiomyocyte immaturity, leading to heart failure, although some clinical features can be rescued by β-hydroxybutyrate supplementation. Our study provides mechanistic insights into how Mettl1 regulates metabolic reprogramming in neonatal cardiomyocytes and highlights the importance of ketogenesis in cardiomyocyte maturation. Du et al. elucidate the mechanism by which Mettl1, a tRNA m7G methyltransferase, regulates cardiomyocyte maturation by influencing the translation of the rate-limiting ketogenesis enzyme Hmgcs2, thereby impacting cardiomyocyte fuel utilization.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 12","pages":"1438-1453"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The tRNA methyltransferase Mettl1 governs ketogenesis through translational regulation and drives metabolic reprogramming in cardiomyocyte maturation\",\"authors\":\"Tailai Du, Yanchuang Han, Hui Han, Ting Xu, Youchen Yan, Jialing Wu, Yan Li, Chen Liu, Xinxue Liao, Yugang Dong, Demeng Chen, Jingsong Ou, Shuibin Lin, Zhan-Peng Huang\",\"doi\":\"10.1038/s44161-024-00565-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After birth, the heart undergoes a shift in energy metabolism and cytoarchitecture to enhance efficient energy production and cardiac contraction, which is essential for postnatal development and growth. However, the precise mechanisms regulating this process remain elusive. Here we show that the RNA modification enzyme Mettl1 is a critical regulator of postnatal metabolic reprogramming and cardiomyocyte maturation in mice, primarily through its influence on the translation of the rate-limiting ketogenesis enzyme Hmgcs2. Our findings reveal that ketogenesis is vital for the postnatal transition of fuel from glucose to fatty acids in cardiomyocytes, achieved by modulating tricarboxylic acid cycle–related enzymatic activity via lysine β-hydroxybutyrylation protein modification. Loss of Mettl1 results in aberrant metabolic reprogramming and cardiomyocyte immaturity, leading to heart failure, although some clinical features can be rescued by β-hydroxybutyrate supplementation. Our study provides mechanistic insights into how Mettl1 regulates metabolic reprogramming in neonatal cardiomyocytes and highlights the importance of ketogenesis in cardiomyocyte maturation. Du et al. elucidate the mechanism by which Mettl1, a tRNA m7G methyltransferase, regulates cardiomyocyte maturation by influencing the translation of the rate-limiting ketogenesis enzyme Hmgcs2, thereby impacting cardiomyocyte fuel utilization.\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\"3 12\",\"pages\":\"1438-1453\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44161-024-00565-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00565-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

出生后,心脏的能量代谢和细胞结构发生转变,以提高能量生产和心脏收缩的效率,这对出生后的发育和生长至关重要。然而,这一过程的精确调控机制仍然难以捉摸。在这里,我们发现 RNA 修饰酶 Mettl1 是小鼠出生后代谢重编程和心肌细胞成熟的关键调控因子,它主要通过影响限速生酮酶 Hmgcs2 的翻译来实现。我们的研究结果表明,生酮对于出生后心肌细胞中燃料从葡萄糖向脂肪酸的转变至关重要,这种转变是通过赖氨酸β-羟基丁酰化蛋白修饰调节三羧酸循环相关酶活性实现的。缺失 Mettl1 会导致代谢重编程失常和心肌细胞不成熟,从而导致心力衰竭,尽管某些临床特征可通过补充β-羟基丁酸盐得到缓解。我们的研究从机理上揭示了Mettl1如何调控新生儿心肌细胞的代谢重编程,并强调了酮体生成在心肌细胞成熟过程中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The tRNA methyltransferase Mettl1 governs ketogenesis through translational regulation and drives metabolic reprogramming in cardiomyocyte maturation
After birth, the heart undergoes a shift in energy metabolism and cytoarchitecture to enhance efficient energy production and cardiac contraction, which is essential for postnatal development and growth. However, the precise mechanisms regulating this process remain elusive. Here we show that the RNA modification enzyme Mettl1 is a critical regulator of postnatal metabolic reprogramming and cardiomyocyte maturation in mice, primarily through its influence on the translation of the rate-limiting ketogenesis enzyme Hmgcs2. Our findings reveal that ketogenesis is vital for the postnatal transition of fuel from glucose to fatty acids in cardiomyocytes, achieved by modulating tricarboxylic acid cycle–related enzymatic activity via lysine β-hydroxybutyrylation protein modification. Loss of Mettl1 results in aberrant metabolic reprogramming and cardiomyocyte immaturity, leading to heart failure, although some clinical features can be rescued by β-hydroxybutyrate supplementation. Our study provides mechanistic insights into how Mettl1 regulates metabolic reprogramming in neonatal cardiomyocytes and highlights the importance of ketogenesis in cardiomyocyte maturation. Du et al. elucidate the mechanism by which Mettl1, a tRNA m7G methyltransferase, regulates cardiomyocyte maturation by influencing the translation of the rate-limiting ketogenesis enzyme Hmgcs2, thereby impacting cardiomyocyte fuel utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
Implications and limitations of the CLEAR-SYNERGY trial for the use of low-dose colchicine in cardiovascular disease. Discovering and targeting mitochondrial loss in NOTCH1-related aortic aneurysm. Mitochondrial NAD+ deficiency in vascular smooth muscle impairs collagen III turnover to trigger thoracic and abdominal aortic aneurysm. Mitochondrial NAD+ transporter SLC25A51 linked to human aortic disease. The clinical promise of 18F-flurpiridaz PET imaging heralds a new frontier in the diagnosis and management of coronary artery disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1