M. Mikus , Ja. Konecny , P. Krömer , K. Bancik , Ji. Konecny , J. Choutka , M. Prauzek
{"title":"基于进化模糊规则的物联网能源管理方法的计算成本分析","authors":"M. Mikus , Ja. Konecny , P. Krömer , K. Bancik , Ji. Konecny , J. Choutka , M. Prauzek","doi":"10.1016/j.adhoc.2024.103715","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an in-depth analysis of the computational costs associated with the application of an Evolutionary Fuzzy Rule-based (EFR) energy management system for Internet of Things (IoT) devices. In energy-harvesting IoT nodes, energy management is critical for sustaining long-term operation. The proposed EFR approach integrates fuzzy logic and genetic programming to autonomously control energy consumption based on available resources. The study evaluates the system’s computational performance, particularly focusing on processing time, RAM and flash memory usage across various hardware configurations. Different compiler optimization levels and floating-point unit (FPU) settings were also explored, comparing standard and pre-compiled algorithms. The results reveal computational times ranging from 2.43 to 5.23 ms, RAM usage peaking at 6.23 kB, and flash memory consumption between 19 kB and 32 kB. A significant reduction in computational overhead is achieved with optimized compiler settings and hardware FPU, highlighting the feasibility of deploying EFR-based energy management systems in low-power, resource-constrained IoT environments. The findings demonstrate the trade-offs between computational efficiency and energy management, with particular benefits observed in scenarios requiring real-time control in remote and energy-limited environments.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"168 ","pages":"Article 103715"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the computational costs of an evolutionary fuzzy rule-based internet-of-things energy management approach\",\"authors\":\"M. Mikus , Ja. Konecny , P. Krömer , K. Bancik , Ji. Konecny , J. Choutka , M. Prauzek\",\"doi\":\"10.1016/j.adhoc.2024.103715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an in-depth analysis of the computational costs associated with the application of an Evolutionary Fuzzy Rule-based (EFR) energy management system for Internet of Things (IoT) devices. In energy-harvesting IoT nodes, energy management is critical for sustaining long-term operation. The proposed EFR approach integrates fuzzy logic and genetic programming to autonomously control energy consumption based on available resources. The study evaluates the system’s computational performance, particularly focusing on processing time, RAM and flash memory usage across various hardware configurations. Different compiler optimization levels and floating-point unit (FPU) settings were also explored, comparing standard and pre-compiled algorithms. The results reveal computational times ranging from 2.43 to 5.23 ms, RAM usage peaking at 6.23 kB, and flash memory consumption between 19 kB and 32 kB. A significant reduction in computational overhead is achieved with optimized compiler settings and hardware FPU, highlighting the feasibility of deploying EFR-based energy management systems in low-power, resource-constrained IoT environments. The findings demonstrate the trade-offs between computational efficiency and energy management, with particular benefits observed in scenarios requiring real-time control in remote and energy-limited environments.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"168 \",\"pages\":\"Article 103715\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524003263\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524003263","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Analysis of the computational costs of an evolutionary fuzzy rule-based internet-of-things energy management approach
This study presents an in-depth analysis of the computational costs associated with the application of an Evolutionary Fuzzy Rule-based (EFR) energy management system for Internet of Things (IoT) devices. In energy-harvesting IoT nodes, energy management is critical for sustaining long-term operation. The proposed EFR approach integrates fuzzy logic and genetic programming to autonomously control energy consumption based on available resources. The study evaluates the system’s computational performance, particularly focusing on processing time, RAM and flash memory usage across various hardware configurations. Different compiler optimization levels and floating-point unit (FPU) settings were also explored, comparing standard and pre-compiled algorithms. The results reveal computational times ranging from 2.43 to 5.23 ms, RAM usage peaking at 6.23 kB, and flash memory consumption between 19 kB and 32 kB. A significant reduction in computational overhead is achieved with optimized compiler settings and hardware FPU, highlighting the feasibility of deploying EFR-based energy management systems in low-power, resource-constrained IoT environments. The findings demonstrate the trade-offs between computational efficiency and energy management, with particular benefits observed in scenarios requiring real-time control in remote and energy-limited environments.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.