通过重新整合赫尔姆霍兹层结构调节界面行为,实现超稳定、宽温程锌离子水电池

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-11-01 DOI:10.1016/j.mattod.2024.08.003
Shijia Li , Jingwen Zhao , Xieyu Xu , Jiasen Shen , Kai Zhang , Xue Chen , Kai Wang , Xingxing Jiao , Ziyang Wang , Dinghao Xu , Qianyu Zhang , Yangyang Liu , Ying Bai
{"title":"通过重新整合赫尔姆霍兹层结构调节界面行为,实现超稳定、宽温程锌离子水电池","authors":"Shijia Li ,&nbsp;Jingwen Zhao ,&nbsp;Xieyu Xu ,&nbsp;Jiasen Shen ,&nbsp;Kai Zhang ,&nbsp;Xue Chen ,&nbsp;Kai Wang ,&nbsp;Xingxing Jiao ,&nbsp;Ziyang Wang ,&nbsp;Dinghao Xu ,&nbsp;Qianyu Zhang ,&nbsp;Yangyang Liu ,&nbsp;Ying Bai","doi":"10.1016/j.mattod.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries are recognized as a potential candidate in large-scale energy storage devices. However, parasitic reactions on interfaces have severely limited their further development due to sticky de-solvation process of Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>. Acetylacetone (Hacac) is proposed as a tri-functional additive by altering the solvation structure to address detrimental interface issues. Specifically, the acetyl groups induced by decomposition of Hacac inhibit dendrite growth, by-product aggregation on anode via guiding ordered deposition of zinc ions and suppressing water decomposition in internal Helmholtz plane (IHP). Meanwhile, the acetyl groups remarkably alleviate by-product aggregation and maintain the cathode structure by accelerating zinc ion transfer and inhibiting disintegration of water in IHP. With the addition of 0.5 wt% Hacac, Zn metal maintains a high coulombic efficiency of 99.9 % after 2000 cycles at 10 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, with superior longevity of 5200 h at 1 mA cm<sup>−2</sup> with 0.5 mAh cm<sup>−2</sup> for Zn|Zn cells. As expected, the assembled Zn|NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> batteries exhibit an outstanding capacity retention of 90 % up to 22,000 cycles at 10 A/g. As a highly efficient strategy, the reframing of Helmholtz layer structure via electrolyte additive could be broadened to address general interfacial issues in advanced energy storage systems.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 50-60"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries\",\"authors\":\"Shijia Li ,&nbsp;Jingwen Zhao ,&nbsp;Xieyu Xu ,&nbsp;Jiasen Shen ,&nbsp;Kai Zhang ,&nbsp;Xue Chen ,&nbsp;Kai Wang ,&nbsp;Xingxing Jiao ,&nbsp;Ziyang Wang ,&nbsp;Dinghao Xu ,&nbsp;Qianyu Zhang ,&nbsp;Yangyang Liu ,&nbsp;Ying Bai\",\"doi\":\"10.1016/j.mattod.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous zinc-ion batteries are recognized as a potential candidate in large-scale energy storage devices. However, parasitic reactions on interfaces have severely limited their further development due to sticky de-solvation process of Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>. Acetylacetone (Hacac) is proposed as a tri-functional additive by altering the solvation structure to address detrimental interface issues. Specifically, the acetyl groups induced by decomposition of Hacac inhibit dendrite growth, by-product aggregation on anode via guiding ordered deposition of zinc ions and suppressing water decomposition in internal Helmholtz plane (IHP). Meanwhile, the acetyl groups remarkably alleviate by-product aggregation and maintain the cathode structure by accelerating zinc ion transfer and inhibiting disintegration of water in IHP. With the addition of 0.5 wt% Hacac, Zn metal maintains a high coulombic efficiency of 99.9 % after 2000 cycles at 10 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, with superior longevity of 5200 h at 1 mA cm<sup>−2</sup> with 0.5 mAh cm<sup>−2</sup> for Zn|Zn cells. As expected, the assembled Zn|NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> batteries exhibit an outstanding capacity retention of 90 % up to 22,000 cycles at 10 A/g. As a highly efficient strategy, the reframing of Helmholtz layer structure via electrolyte additive could be broadened to address general interfacial issues in advanced energy storage systems.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"80 \",\"pages\":\"Pages 50-60\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001573\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001573","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌离子水电池被认为是大规模储能设备的潜在候选者。然而,由于 Zn(H2O)62+ 的粘性脱溶过程,界面上的寄生反应严重限制了其进一步发展。乙酰丙酮(Hacac)作为一种三功能添加剂,通过改变溶解结构来解决有害的界面问题。具体来说,Hacac 分解后产生的乙酰基团通过引导锌离子有序沉积和抑制内部亥姆霍兹平面(IHP)的水分解,抑制了枝晶的生长和阳极上副产物的聚集。同时,乙酰基通过加速锌离子转移和抑制 IHP 中水的分解,显著缓解了副产物的聚集并保持了阴极结构。添加 0.5 wt% Hacac 后,金属锌在 10 mA cm-2 和 1 mAh cm-2 条件下循环 2000 次后仍能保持 99.9 % 的高库仑效率,在 1 mA cm-2 和 0.5 mAh cm-2 条件下,Zn|Zn 电池的寿命可达 5200 小时。正如预期的那样,组装好的 Zn|NH4V4O10 电池在 10 A/g 条件下可循环使用 22,000 次,容量保持率高达 90%。作为一种高效的策略,通过电解质添加剂重构亥姆霍兹层结构可扩展到解决先进储能系统中的一般界面问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
Aqueous zinc-ion batteries are recognized as a potential candidate in large-scale energy storage devices. However, parasitic reactions on interfaces have severely limited their further development due to sticky de-solvation process of Zn(H2O)62+. Acetylacetone (Hacac) is proposed as a tri-functional additive by altering the solvation structure to address detrimental interface issues. Specifically, the acetyl groups induced by decomposition of Hacac inhibit dendrite growth, by-product aggregation on anode via guiding ordered deposition of zinc ions and suppressing water decomposition in internal Helmholtz plane (IHP). Meanwhile, the acetyl groups remarkably alleviate by-product aggregation and maintain the cathode structure by accelerating zinc ion transfer and inhibiting disintegration of water in IHP. With the addition of 0.5 wt% Hacac, Zn metal maintains a high coulombic efficiency of 99.9 % after 2000 cycles at 10 mA cm−2 and 1 mAh cm−2, with superior longevity of 5200 h at 1 mA cm−2 with 0.5 mAh cm−2 for Zn|Zn cells. As expected, the assembled Zn|NH4V4O10 batteries exhibit an outstanding capacity retention of 90 % up to 22,000 cycles at 10 A/g. As a highly efficient strategy, the reframing of Helmholtz layer structure via electrolyte additive could be broadened to address general interfacial issues in advanced energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy Bottom-up growth of high-quality BiOCl twisted homostructures via a precursor regulation strategy Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1