利用原子力显微镜 (AFM-MS) 对材料进行机械光谱分析

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-11-01 DOI:10.1016/j.mattod.2024.08.021
M. Petrov , D. Canena , N. Kulachenkov , N. Kumar , Pierre Nickmilder , Philippe Leclère , Igor Sokolov
{"title":"利用原子力显微镜 (AFM-MS) 对材料进行机械光谱分析","authors":"M. Petrov ,&nbsp;D. Canena ,&nbsp;N. Kulachenkov ,&nbsp;N. Kumar ,&nbsp;Pierre Nickmilder ,&nbsp;Philippe Leclère ,&nbsp;Igor Sokolov","doi":"10.1016/j.mattod.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM operating in sub-resonance tapping imaging mode, which enables the collection of multiple physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By comparing these properties to a database of known materials, the technique identifies the location of constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the material identification and correlation of nanostructure with macroscopic material properties. The ability to map material composition with such high resolution will significantly advance the understanding and design of complex, nanostructured materials.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 218-225"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical spectroscopy of materials using atomic force microscopy (AFM-MS)\",\"authors\":\"M. Petrov ,&nbsp;D. Canena ,&nbsp;N. Kulachenkov ,&nbsp;N. Kumar ,&nbsp;Pierre Nickmilder ,&nbsp;Philippe Leclère ,&nbsp;Igor Sokolov\",\"doi\":\"10.1016/j.mattod.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM operating in sub-resonance tapping imaging mode, which enables the collection of multiple physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By comparing these properties to a database of known materials, the technique identifies the location of constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the material identification and correlation of nanostructure with macroscopic material properties. The ability to map material composition with such high resolution will significantly advance the understanding and design of complex, nanostructured materials.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"80 \",\"pages\":\"Pages 218-225\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001871\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001871","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们介绍一种新型机械光谱原子力显微镜(AFM-MS)技术,该技术将原子力显微镜的高分辨率成像能力与机器学习(ML)分类相结合,从而克服了当前光谱方法的局限性。AFM-MS 采用在亚共振攻丝成像模式下工作的原子力显微镜,能以高度可重复的方式收集具有亚纳米级横向分辨率的样品的多种物理和机械属性图。通过将这些特性与已知材料数据库进行比较,该技术可在多层面算法的帮助下确定每个图像像素的组成材料位置。我们在各种材料混合物上演示了 AFM-MS,实现了前所未有的 1.6 纳米横向光谱分辨率。这种强大的方法为纳米级材料研究开辟了新的途径,包括材料识别以及纳米结构与宏观材料特性的关联。以如此高的分辨率绘制材料成分图的能力将极大地推动对复杂纳米结构材料的理解和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical spectroscopy of materials using atomic force microscopy (AFM-MS)
Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM operating in sub-resonance tapping imaging mode, which enables the collection of multiple physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By comparing these properties to a database of known materials, the technique identifies the location of constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the material identification and correlation of nanostructure with macroscopic material properties. The ability to map material composition with such high resolution will significantly advance the understanding and design of complex, nanostructured materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy Bottom-up growth of high-quality BiOCl twisted homostructures via a precursor regulation strategy Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1