LPBF 印刷 In625 基金属基复合材料优异的高温力学性能和微观结构特征

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-11-01 DOI:10.1016/j.mattod.2024.09.006
Emre Tekoglu , Jong-Soo Bae , Ho-A Kim , Kwang-Hyeok Lim , Jian Liu , Tyler D. Doležal , So Yeon Kim , Mohammed A. Alrizqi , Aubrey Penn , Wen Chen , A. John Hart , Joo-Hee Kang , Chang-Seok Oh , Jiwon Park , Fan Sun , Sangtae Kim , Gi-Dong Sim , Ju Li
{"title":"LPBF 印刷 In625 基金属基复合材料优异的高温力学性能和微观结构特征","authors":"Emre Tekoglu ,&nbsp;Jong-Soo Bae ,&nbsp;Ho-A Kim ,&nbsp;Kwang-Hyeok Lim ,&nbsp;Jian Liu ,&nbsp;Tyler D. Doležal ,&nbsp;So Yeon Kim ,&nbsp;Mohammed A. Alrizqi ,&nbsp;Aubrey Penn ,&nbsp;Wen Chen ,&nbsp;A. John Hart ,&nbsp;Joo-Hee Kang ,&nbsp;Chang-Seok Oh ,&nbsp;Jiwon Park ,&nbsp;Fan Sun ,&nbsp;Sangtae Kim ,&nbsp;Gi-Dong Sim ,&nbsp;Ju Li","doi":"10.1016/j.mattod.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demands for high-temperature materials, especially in aerospace and energy production, compel thorough explorations of innovative materials. Here, we demonstrate significantly enhanced high-temperature mechanical properties of Inconel 625 (In625) based metal matrix composites (MMCs) fabricated by laser powder bed fusion (LPBF) additive manufacturing. The MMC feedstocks for LPBF were fabricated with fine ceramic particles (i.e., titanium diboride (TiB<sub>2</sub>), titanium carbide (TiC), zirconium diboride (ZrB<sub>2</sub>) and zirconium carbide (ZrC)) separately mixed with In625 powders. Among the printed specimens, the In625 + TiB<sub>2</sub> showed an exceptional strength-ductility combination at 800 °C as well as an outstanding creep resistance at 800 °C under 150 MPa tensile stress. The detailed microstructural characterization, along with thermodynamic calculation and atomic simulations, reveal that the addition of TiB<sub>2</sub> results in the formation of serrated grain boundaries, (Cr, Mo)-boride phases near the grain boundaries, and nano-dispersed (Ti, Al, Nb)-oxide phases within the matrix. These features effectively suppress the formation of detrimental high-temperature phases and enhance the material’s high-temperature properties. Beyond amplifying the inherent thermal attributes of In625 superalloy, the research highlights the transformative potential of boride doping and the composition design of MMCs specifically for the LPBF process.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 297-307"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior high-temperature mechanical properties and microstructural features of LPBF-printed In625-based metal matrix composites\",\"authors\":\"Emre Tekoglu ,&nbsp;Jong-Soo Bae ,&nbsp;Ho-A Kim ,&nbsp;Kwang-Hyeok Lim ,&nbsp;Jian Liu ,&nbsp;Tyler D. Doležal ,&nbsp;So Yeon Kim ,&nbsp;Mohammed A. Alrizqi ,&nbsp;Aubrey Penn ,&nbsp;Wen Chen ,&nbsp;A. John Hart ,&nbsp;Joo-Hee Kang ,&nbsp;Chang-Seok Oh ,&nbsp;Jiwon Park ,&nbsp;Fan Sun ,&nbsp;Sangtae Kim ,&nbsp;Gi-Dong Sim ,&nbsp;Ju Li\",\"doi\":\"10.1016/j.mattod.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing demands for high-temperature materials, especially in aerospace and energy production, compel thorough explorations of innovative materials. Here, we demonstrate significantly enhanced high-temperature mechanical properties of Inconel 625 (In625) based metal matrix composites (MMCs) fabricated by laser powder bed fusion (LPBF) additive manufacturing. The MMC feedstocks for LPBF were fabricated with fine ceramic particles (i.e., titanium diboride (TiB<sub>2</sub>), titanium carbide (TiC), zirconium diboride (ZrB<sub>2</sub>) and zirconium carbide (ZrC)) separately mixed with In625 powders. Among the printed specimens, the In625 + TiB<sub>2</sub> showed an exceptional strength-ductility combination at 800 °C as well as an outstanding creep resistance at 800 °C under 150 MPa tensile stress. The detailed microstructural characterization, along with thermodynamic calculation and atomic simulations, reveal that the addition of TiB<sub>2</sub> results in the formation of serrated grain boundaries, (Cr, Mo)-boride phases near the grain boundaries, and nano-dispersed (Ti, Al, Nb)-oxide phases within the matrix. These features effectively suppress the formation of detrimental high-temperature phases and enhance the material’s high-temperature properties. Beyond amplifying the inherent thermal attributes of In625 superalloy, the research highlights the transformative potential of boride doping and the composition design of MMCs specifically for the LPBF process.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"80 \",\"pages\":\"Pages 297-307\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124002098\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002098","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对高温材料日益增长的需求,尤其是在航空航天和能源生产领域,迫使人们对创新材料进行深入探索。在此,我们展示了通过激光粉末床熔融(LPBF)增材制造技术制造的基于铬镍铁合金 625(In625)的金属基复合材料(MMCs),其高温机械性能得到了显著增强。用于 LPBF 的金属基复合材料原料是分别与 In625 粉末混合的细陶瓷颗粒(即二硼化钛 (TiB2)、碳化钛 (TiC)、二硼化锆 (ZrB2) 和碳化锆 (ZrC))。在印制的试样中,In625 + TiB2 试样在 800 °C 时显示出卓越的强度-电导率组合,以及在 800 °C 150 兆帕拉伸应力条件下出色的抗蠕变性。详细的微观结构表征以及热力学计算和原子模拟显示,TiB2 的加入导致形成锯齿状晶界、晶界附近的(Cr、Mo)硼化物相以及基体中的纳米分散(Ti、Al、Nb)氧化物相。这些特征有效抑制了有害高温相的形成,增强了材料的高温性能。除了增强 In625 超级合金的固有热属性外,该研究还突出了掺硼的变革潜力,以及专为 LPBF 工艺设计的 MMC 成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superior high-temperature mechanical properties and microstructural features of LPBF-printed In625-based metal matrix composites
The growing demands for high-temperature materials, especially in aerospace and energy production, compel thorough explorations of innovative materials. Here, we demonstrate significantly enhanced high-temperature mechanical properties of Inconel 625 (In625) based metal matrix composites (MMCs) fabricated by laser powder bed fusion (LPBF) additive manufacturing. The MMC feedstocks for LPBF were fabricated with fine ceramic particles (i.e., titanium diboride (TiB2), titanium carbide (TiC), zirconium diboride (ZrB2) and zirconium carbide (ZrC)) separately mixed with In625 powders. Among the printed specimens, the In625 + TiB2 showed an exceptional strength-ductility combination at 800 °C as well as an outstanding creep resistance at 800 °C under 150 MPa tensile stress. The detailed microstructural characterization, along with thermodynamic calculation and atomic simulations, reveal that the addition of TiB2 results in the formation of serrated grain boundaries, (Cr, Mo)-boride phases near the grain boundaries, and nano-dispersed (Ti, Al, Nb)-oxide phases within the matrix. These features effectively suppress the formation of detrimental high-temperature phases and enhance the material’s high-temperature properties. Beyond amplifying the inherent thermal attributes of In625 superalloy, the research highlights the transformative potential of boride doping and the composition design of MMCs specifically for the LPBF process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy Bottom-up growth of high-quality BiOCl twisted homostructures via a precursor regulation strategy Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1