{"title":"基于伪标签知识挖掘的多源无域适配","authors":"Fang Zhou , Zun Xu , Wei Wei , Lei Zhang","doi":"10.1016/j.patrec.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>MSFDA methods were proposed to train unlabeled target data using a group of source pre-trained models, without directly accessing labeled source domain data. Through transferring knowledge to target domain using pseudo labels obtained by source pre-trained models, existing methods have shown potential for cross-domain classification. However, these models have not directly addressed the negative knowledge transfer caused by incorrect pseudo labels. In this study, we focus on the problem and propose a multi-source-free domain adaptation method based on pseudo-label knowledge mining. Specifically, we first utilize average entropy weighting to compute pseudo labels for target data. Then, we assign a confidence level to each target sample, considering it as either high or low. Finally, we generate mixed augmented target samples and conduct different self-training tasks for those with different confidence to alleviate the negative transfer resulting from inaccurate pseudo labels. Experimental results on three datasets demonstrate the effectiveness of our proposed method.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"187 ","pages":"Pages 80-85"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi source-free domain adaptation based on pseudo-label knowledge mining\",\"authors\":\"Fang Zhou , Zun Xu , Wei Wei , Lei Zhang\",\"doi\":\"10.1016/j.patrec.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MSFDA methods were proposed to train unlabeled target data using a group of source pre-trained models, without directly accessing labeled source domain data. Through transferring knowledge to target domain using pseudo labels obtained by source pre-trained models, existing methods have shown potential for cross-domain classification. However, these models have not directly addressed the negative knowledge transfer caused by incorrect pseudo labels. In this study, we focus on the problem and propose a multi-source-free domain adaptation method based on pseudo-label knowledge mining. Specifically, we first utilize average entropy weighting to compute pseudo labels for target data. Then, we assign a confidence level to each target sample, considering it as either high or low. Finally, we generate mixed augmented target samples and conduct different self-training tasks for those with different confidence to alleviate the negative transfer resulting from inaccurate pseudo labels. Experimental results on three datasets demonstrate the effectiveness of our proposed method.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"187 \",\"pages\":\"Pages 80-85\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524003209\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003209","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi source-free domain adaptation based on pseudo-label knowledge mining
MSFDA methods were proposed to train unlabeled target data using a group of source pre-trained models, without directly accessing labeled source domain data. Through transferring knowledge to target domain using pseudo labels obtained by source pre-trained models, existing methods have shown potential for cross-domain classification. However, these models have not directly addressed the negative knowledge transfer caused by incorrect pseudo labels. In this study, we focus on the problem and propose a multi-source-free domain adaptation method based on pseudo-label knowledge mining. Specifically, we first utilize average entropy weighting to compute pseudo labels for target data. Then, we assign a confidence level to each target sample, considering it as either high or low. Finally, we generate mixed augmented target samples and conduct different self-training tasks for those with different confidence to alleviate the negative transfer resulting from inaccurate pseudo labels. Experimental results on three datasets demonstrate the effectiveness of our proposed method.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.