T. Sathish , R. Saravanan , Jayant Giri , Shoyebmohamad F. Shaikh , Mohd Ubaidullah , Ümit Ağbulut
{"title":"通过异相固体催化剂和碳纳米管将生物废料与绵羊脂肪油转化为生物燃料","authors":"T. Sathish , R. Saravanan , Jayant Giri , Shoyebmohamad F. Shaikh , Mohd Ubaidullah , Ümit Ağbulut","doi":"10.1016/j.ijhydene.2024.11.313","DOIUrl":null,"url":null,"abstract":"<div><div>Heterogeneous solid catalysts have been largely developed for biodiesel production, because of their strong hydrothermal stability, attractive acid-base properties, and efficient recovery/reusability. Hence, the catalyst from biological waste was an effective choice because of its lower emissions, and cost-effective method than other catalysts preparations. In this study, the biofuel was prepared by using sheep fat oil using different biological waste catalysts under various operating conditions. The catalyst was prepared by microalgae ash, and waste fruit waste ash through a pyrolysis reactor at 250 °C for 30 min. Furthermore, the CNT nanoparticles integrated with the catalyst during transesterification to enhance the biofuel conversion efficiency. The conversion process was performed under operating conditions of various catalyst loading (5 wt%, 10 wt%, and 15 wt%), various oil: methanol ratios (1:4, 1:6, 1:8, and 1:10), and reaction times of about (60 min, 120 min, 180 min, and 240 min). Based on the experimental results, the following conclusions were drawn. The resulting, peak operating conditions such as catalyst loading of 15 wt%, oil: methanol ratios of 1:6, and reaction time of 240 min recorded a higher biofuel conversion than other conditions. Furthermore, the CNT nanoparticle integration within catalysts for both MAC and WFA is about 59.8%, 63.5%, 62.3%, and 61.6%, 60.2%, and 58.7% at a condition of higher Catalyst loading (15 wt%), Oil: methanol molar ratio (1:4), and reaction time (240 min).</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"96 ","pages":"Pages 692-702"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofuel conversion through heterogeneous solid catalysts and carbon nanotubes by biological waste material with sheep fat oil\",\"authors\":\"T. Sathish , R. Saravanan , Jayant Giri , Shoyebmohamad F. Shaikh , Mohd Ubaidullah , Ümit Ağbulut\",\"doi\":\"10.1016/j.ijhydene.2024.11.313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterogeneous solid catalysts have been largely developed for biodiesel production, because of their strong hydrothermal stability, attractive acid-base properties, and efficient recovery/reusability. Hence, the catalyst from biological waste was an effective choice because of its lower emissions, and cost-effective method than other catalysts preparations. In this study, the biofuel was prepared by using sheep fat oil using different biological waste catalysts under various operating conditions. The catalyst was prepared by microalgae ash, and waste fruit waste ash through a pyrolysis reactor at 250 °C for 30 min. Furthermore, the CNT nanoparticles integrated with the catalyst during transesterification to enhance the biofuel conversion efficiency. The conversion process was performed under operating conditions of various catalyst loading (5 wt%, 10 wt%, and 15 wt%), various oil: methanol ratios (1:4, 1:6, 1:8, and 1:10), and reaction times of about (60 min, 120 min, 180 min, and 240 min). Based on the experimental results, the following conclusions were drawn. The resulting, peak operating conditions such as catalyst loading of 15 wt%, oil: methanol ratios of 1:6, and reaction time of 240 min recorded a higher biofuel conversion than other conditions. Furthermore, the CNT nanoparticle integration within catalysts for both MAC and WFA is about 59.8%, 63.5%, 62.3%, and 61.6%, 60.2%, and 58.7% at a condition of higher Catalyst loading (15 wt%), Oil: methanol molar ratio (1:4), and reaction time (240 min).</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"96 \",\"pages\":\"Pages 692-702\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924050031\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924050031","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Biofuel conversion through heterogeneous solid catalysts and carbon nanotubes by biological waste material with sheep fat oil
Heterogeneous solid catalysts have been largely developed for biodiesel production, because of their strong hydrothermal stability, attractive acid-base properties, and efficient recovery/reusability. Hence, the catalyst from biological waste was an effective choice because of its lower emissions, and cost-effective method than other catalysts preparations. In this study, the biofuel was prepared by using sheep fat oil using different biological waste catalysts under various operating conditions. The catalyst was prepared by microalgae ash, and waste fruit waste ash through a pyrolysis reactor at 250 °C for 30 min. Furthermore, the CNT nanoparticles integrated with the catalyst during transesterification to enhance the biofuel conversion efficiency. The conversion process was performed under operating conditions of various catalyst loading (5 wt%, 10 wt%, and 15 wt%), various oil: methanol ratios (1:4, 1:6, 1:8, and 1:10), and reaction times of about (60 min, 120 min, 180 min, and 240 min). Based on the experimental results, the following conclusions were drawn. The resulting, peak operating conditions such as catalyst loading of 15 wt%, oil: methanol ratios of 1:6, and reaction time of 240 min recorded a higher biofuel conversion than other conditions. Furthermore, the CNT nanoparticle integration within catalysts for both MAC and WFA is about 59.8%, 63.5%, 62.3%, and 61.6%, 60.2%, and 58.7% at a condition of higher Catalyst loading (15 wt%), Oil: methanol molar ratio (1:4), and reaction time (240 min).
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.