回收混凝土粉末的电化学再循环:选择性回收钙和硅,实现可持续建筑材料

IF 12.4 Q1 ENVIRONMENTAL SCIENCES Resources Environment and Sustainability Pub Date : 2024-11-20 DOI:10.1016/j.resenv.2024.100182
Zheng Fang , Guangqi Xiong , Zongxuan Shao , Shuai Zhou , Guangfeng Ou , Lei Liu , Michio Suzuki , Chong Wang , Yuya Sakai
{"title":"回收混凝土粉末的电化学再循环:选择性回收钙和硅,实现可持续建筑材料","authors":"Zheng Fang ,&nbsp;Guangqi Xiong ,&nbsp;Zongxuan Shao ,&nbsp;Shuai Zhou ,&nbsp;Guangfeng Ou ,&nbsp;Lei Liu ,&nbsp;Michio Suzuki ,&nbsp;Chong Wang ,&nbsp;Yuya Sakai","doi":"10.1016/j.resenv.2024.100182","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid urbanization produces billions of tons of concrete waste annually, with recycled concrete powder (RCP) posing significant challenges due to its high porosity and limited reusability. To overcome RCP’s inherent limitations and maximize resource utilization, we developed a novel “Recycled Concrete Powder Electrolyzer” for selective recovery of key components. This electrochemical method efficiently extracted Ca<sup>2+</sup> ions from RCP, achieving a 96% calcium extraction efficiency comparable to acid leaching. The process produced high-purity portlandite (94% purity; 65.58% yield) with crystal sizes below <span><math><mrow><mn>30</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, ideal for cement manufacturing, while also recovering fine sand powder and silica-containing products. A Ca(NO<sub>3</sub>)<sub>2</sub> electrolyte enhanced Ca<sup>2+</sup> migration and prevented membrane fouling, resulting in lower energy consumption compared to the NaNO<sub>3</sub> system. By converting RCP into a carbon-free cement precursor and recovering valuable components, this approach demonstrates the feasibility of transforming problematic waste into sustainable construction materials. It offers a circular economy solution for concrete waste recycling, reducing landfill burden while providing a low-emission alternative for cement production.</div></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"18 ","pages":"Article 100182"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical recycling of recycled concrete powder: Selective recovery of calcium and silica to enable sustainable construction materials\",\"authors\":\"Zheng Fang ,&nbsp;Guangqi Xiong ,&nbsp;Zongxuan Shao ,&nbsp;Shuai Zhou ,&nbsp;Guangfeng Ou ,&nbsp;Lei Liu ,&nbsp;Michio Suzuki ,&nbsp;Chong Wang ,&nbsp;Yuya Sakai\",\"doi\":\"10.1016/j.resenv.2024.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid urbanization produces billions of tons of concrete waste annually, with recycled concrete powder (RCP) posing significant challenges due to its high porosity and limited reusability. To overcome RCP’s inherent limitations and maximize resource utilization, we developed a novel “Recycled Concrete Powder Electrolyzer” for selective recovery of key components. This electrochemical method efficiently extracted Ca<sup>2+</sup> ions from RCP, achieving a 96% calcium extraction efficiency comparable to acid leaching. The process produced high-purity portlandite (94% purity; 65.58% yield) with crystal sizes below <span><math><mrow><mn>30</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, ideal for cement manufacturing, while also recovering fine sand powder and silica-containing products. A Ca(NO<sub>3</sub>)<sub>2</sub> electrolyte enhanced Ca<sup>2+</sup> migration and prevented membrane fouling, resulting in lower energy consumption compared to the NaNO<sub>3</sub> system. By converting RCP into a carbon-free cement precursor and recovering valuable components, this approach demonstrates the feasibility of transforming problematic waste into sustainable construction materials. It offers a circular economy solution for concrete waste recycling, reducing landfill burden while providing a low-emission alternative for cement production.</div></div>\",\"PeriodicalId\":34479,\"journal\":{\"name\":\"Resources Environment and Sustainability\",\"volume\":\"18 \",\"pages\":\"Article 100182\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Environment and Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666916124000355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916124000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

快速的城市化进程每年会产生数十亿吨混凝土废料,而再生混凝土粉(RCP)因其孔隙率高、可再利用性有限而面临巨大挑战。为了克服回收混凝土粉的固有局限性并最大限度地提高资源利用率,我们开发了一种新型 "回收混凝土粉电解器",用于选择性回收关键成分。这种电化学方法可有效提取 RCP 中的 Ca2+ 离子,钙提取效率高达 96%,与酸浸法相当。该工艺生产出晶体尺寸小于 30μm 的高纯度硅灰石(纯度 94%;产率 65.58%),是水泥生产的理想原料,同时还回收了细砂粉末和含硅产品。与 NaNO3 系统相比,Ca(NO3)2 电解质增强了 Ca2+ 的迁移,防止了膜堵塞,从而降低了能耗。通过将 RCP 转化为无碳水泥前体并回收有价值的成分,这种方法证明了将问题废物转化为可持续建筑材料的可行性。它为混凝土废物回收提供了一种循环经济解决方案,在减少垃圾填埋负担的同时,还为水泥生产提供了一种低排放替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical recycling of recycled concrete powder: Selective recovery of calcium and silica to enable sustainable construction materials
Rapid urbanization produces billions of tons of concrete waste annually, with recycled concrete powder (RCP) posing significant challenges due to its high porosity and limited reusability. To overcome RCP’s inherent limitations and maximize resource utilization, we developed a novel “Recycled Concrete Powder Electrolyzer” for selective recovery of key components. This electrochemical method efficiently extracted Ca2+ ions from RCP, achieving a 96% calcium extraction efficiency comparable to acid leaching. The process produced high-purity portlandite (94% purity; 65.58% yield) with crystal sizes below 30μm, ideal for cement manufacturing, while also recovering fine sand powder and silica-containing products. A Ca(NO3)2 electrolyte enhanced Ca2+ migration and prevented membrane fouling, resulting in lower energy consumption compared to the NaNO3 system. By converting RCP into a carbon-free cement precursor and recovering valuable components, this approach demonstrates the feasibility of transforming problematic waste into sustainable construction materials. It offers a circular economy solution for concrete waste recycling, reducing landfill burden while providing a low-emission alternative for cement production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
期刊最新文献
Electrochemical recycling of recycled concrete powder: Selective recovery of calcium and silica to enable sustainable construction materials Effects of asymmetric policies to achieve emissions reduction on energy trade: A North American perspective An efficient strategy to promote food waste composting by adding black soldier fly (Hermetia illucens) larvae during the compost maturation phase Household energy use and barriers in clean transition in the Tibetan Plateau Enhancing the performance of runoff prediction in data-scarce hydrological domains using advanced transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1