{"title":"火花测试仪器中的场发射对接触火花的影响","authors":"Luwen Song , Shulin Liu , Dangshu Wang","doi":"10.1016/j.elstat.2024.103995","DOIUrl":null,"url":null,"abstract":"<div><div>Explosion-proof electrical equipment must be tested with the spark test apparatus (STA). This discharge was important for electrical explosion-proof safety. This study aimed to investigate the effect of field emission on the contact spark of the STA. Results show that the primary discharge modes were field emission and electron impact ionization. The gap width was estimated to be 6–8 μm. The distribution of the ions and radicals were revealed under the different field emissions. The impact of radicals on ignition was also discussed.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"133 ","pages":"Article 103995"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of field emission on contact spark in the spark test apparatus\",\"authors\":\"Luwen Song , Shulin Liu , Dangshu Wang\",\"doi\":\"10.1016/j.elstat.2024.103995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Explosion-proof electrical equipment must be tested with the spark test apparatus (STA). This discharge was important for electrical explosion-proof safety. This study aimed to investigate the effect of field emission on the contact spark of the STA. Results show that the primary discharge modes were field emission and electron impact ionization. The gap width was estimated to be 6–8 μm. The distribution of the ions and radicals were revealed under the different field emissions. The impact of radicals on ignition was also discussed.</div></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":\"133 \",\"pages\":\"Article 103995\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304388624001025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388624001025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
防爆电气设备必须使用火花测试仪器(STA)进行测试。这种放电对电气防爆安全非常重要。本研究旨在调查场发射对 STA 接触火花的影响。结果表明,主要的放电模式是场发射和电子撞击电离。间隙宽度估计为 6-8 μm。在不同的场发射下,离子和自由基的分布也不同。还讨论了自由基对点火的影响。
Effect of field emission on contact spark in the spark test apparatus
Explosion-proof electrical equipment must be tested with the spark test apparatus (STA). This discharge was important for electrical explosion-proof safety. This study aimed to investigate the effect of field emission on the contact spark of the STA. Results show that the primary discharge modes were field emission and electron impact ionization. The gap width was estimated to be 6–8 μm. The distribution of the ions and radicals were revealed under the different field emissions. The impact of radicals on ignition was also discussed.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.