Saakaar Bhatnagar , Andrew Comerford , Zelu Xu , Davide Berti Polato , Araz Banaeizadeh , Alessandro Ferraris
{"title":"拟合加速度量热数据的化学反应神经网络","authors":"Saakaar Bhatnagar , Andrew Comerford , Zelu Xu , Davide Berti Polato , Araz Banaeizadeh , Alessandro Ferraris","doi":"10.1016/j.jpowsour.2024.235834","DOIUrl":null,"url":null,"abstract":"<div><div>As the demand for lithium-ion batteries rapidly increases there is a need to design these cells in a safe manner to mitigate thermal runaway. Thermal runaway in batteries leads to an uncontrollable temperature rise and potentially battery fires, which is a major safety concern. Typically, when modeling the chemical kinetics of thermal runaway calorimetry data (e.g. Accelerating Rate Calorimetry (ARC)) is needed to determine the temperature-driven decomposition kinetics. Conventional methods of fitting Arrhenius Ordinary Differential Equation (ODE) thermal runaway models to ARC data make several assumptions that reduce the fidelity and generalizability of the obtained model. In this paper, Chemical Reaction Neural Networks (CRNNs) are trained to fit the kinetic parameters of N-equation Arrhenius ODEs to ARC data obtained from a Molicel 21700 P45B. The models are found to be better approximations of the experimental data. The flexibility of the method is demonstrated by experimenting with two-equation and four-equation models. Thermal runaway simulations are conducted in 3D using the obtained kinetic parameters, showing the applicability of the obtained thermal runaway models to large-scale simulations.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235834"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Reaction Neural Networks for fitting Accelerating Rate Calorimetry data\",\"authors\":\"Saakaar Bhatnagar , Andrew Comerford , Zelu Xu , Davide Berti Polato , Araz Banaeizadeh , Alessandro Ferraris\",\"doi\":\"10.1016/j.jpowsour.2024.235834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the demand for lithium-ion batteries rapidly increases there is a need to design these cells in a safe manner to mitigate thermal runaway. Thermal runaway in batteries leads to an uncontrollable temperature rise and potentially battery fires, which is a major safety concern. Typically, when modeling the chemical kinetics of thermal runaway calorimetry data (e.g. Accelerating Rate Calorimetry (ARC)) is needed to determine the temperature-driven decomposition kinetics. Conventional methods of fitting Arrhenius Ordinary Differential Equation (ODE) thermal runaway models to ARC data make several assumptions that reduce the fidelity and generalizability of the obtained model. In this paper, Chemical Reaction Neural Networks (CRNNs) are trained to fit the kinetic parameters of N-equation Arrhenius ODEs to ARC data obtained from a Molicel 21700 P45B. The models are found to be better approximations of the experimental data. The flexibility of the method is demonstrated by experimenting with two-equation and four-equation models. Thermal runaway simulations are conducted in 3D using the obtained kinetic parameters, showing the applicability of the obtained thermal runaway models to large-scale simulations.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235834\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324017865\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017865","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Chemical Reaction Neural Networks for fitting Accelerating Rate Calorimetry data
As the demand for lithium-ion batteries rapidly increases there is a need to design these cells in a safe manner to mitigate thermal runaway. Thermal runaway in batteries leads to an uncontrollable temperature rise and potentially battery fires, which is a major safety concern. Typically, when modeling the chemical kinetics of thermal runaway calorimetry data (e.g. Accelerating Rate Calorimetry (ARC)) is needed to determine the temperature-driven decomposition kinetics. Conventional methods of fitting Arrhenius Ordinary Differential Equation (ODE) thermal runaway models to ARC data make several assumptions that reduce the fidelity and generalizability of the obtained model. In this paper, Chemical Reaction Neural Networks (CRNNs) are trained to fit the kinetic parameters of N-equation Arrhenius ODEs to ARC data obtained from a Molicel 21700 P45B. The models are found to be better approximations of the experimental data. The flexibility of the method is demonstrated by experimenting with two-equation and four-equation models. Thermal runaway simulations are conducted in 3D using the obtained kinetic parameters, showing the applicability of the obtained thermal runaway models to large-scale simulations.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems