Benjamin Nowacki , Jayanth Ramamurthy , Adam Thelen , Chad Tischer , Cary L. Pint , Chao Hu
{"title":"通过短时电流脉冲快速估算锂离子电池容量和电阻值","authors":"Benjamin Nowacki , Jayanth Ramamurthy , Adam Thelen , Chad Tischer , Cary L. Pint , Chao Hu","doi":"10.1016/j.jpowsour.2024.235813","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid onboard diagnosis of battery state of health enables the use of real-time control strategies that can improve product safety and maximize battery lifetime. However, onboard prediction of battery state-of-health is challenging due to the limitations imposed on diagnostic tests so as not to negatively affect the user experience and impede normal operation. To this end, we demonstrate a lightweight machine learning model capable of predicting a lithium-ion battery’s discharge capacity and internal resistance at various states of charge using only the raw voltage-capacity time-series data recorded during short-duration (100 s) current pulses. Tested on two battery aging datasets, one publicly available and the other newly collected for this work, we find that the best models can accurately predict cell discharge capacity with an average mean-absolute-percent-error of 1.66%. Additionally, we quantize and embed the machine learning model onto a microcontroller and show comparable accuracy to the computer-based model, further demonstrating the practicality of on-board rapid capacity and resistance estimation.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235813"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid estimation of lithium-ion battery capacity and resistances from short duration current pulses\",\"authors\":\"Benjamin Nowacki , Jayanth Ramamurthy , Adam Thelen , Chad Tischer , Cary L. Pint , Chao Hu\",\"doi\":\"10.1016/j.jpowsour.2024.235813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid onboard diagnosis of battery state of health enables the use of real-time control strategies that can improve product safety and maximize battery lifetime. However, onboard prediction of battery state-of-health is challenging due to the limitations imposed on diagnostic tests so as not to negatively affect the user experience and impede normal operation. To this end, we demonstrate a lightweight machine learning model capable of predicting a lithium-ion battery’s discharge capacity and internal resistance at various states of charge using only the raw voltage-capacity time-series data recorded during short-duration (100 s) current pulses. Tested on two battery aging datasets, one publicly available and the other newly collected for this work, we find that the best models can accurately predict cell discharge capacity with an average mean-absolute-percent-error of 1.66%. Additionally, we quantize and embed the machine learning model onto a microcontroller and show comparable accuracy to the computer-based model, further demonstrating the practicality of on-board rapid capacity and resistance estimation.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235813\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324017658\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017658","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rapid estimation of lithium-ion battery capacity and resistances from short duration current pulses
Rapid onboard diagnosis of battery state of health enables the use of real-time control strategies that can improve product safety and maximize battery lifetime. However, onboard prediction of battery state-of-health is challenging due to the limitations imposed on diagnostic tests so as not to negatively affect the user experience and impede normal operation. To this end, we demonstrate a lightweight machine learning model capable of predicting a lithium-ion battery’s discharge capacity and internal resistance at various states of charge using only the raw voltage-capacity time-series data recorded during short-duration (100 s) current pulses. Tested on two battery aging datasets, one publicly available and the other newly collected for this work, we find that the best models can accurately predict cell discharge capacity with an average mean-absolute-percent-error of 1.66%. Additionally, we quantize and embed the machine learning model onto a microcontroller and show comparable accuracy to the computer-based model, further demonstrating the practicality of on-board rapid capacity and resistance estimation.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems