利用有效的致密层和直接接触式电池结构提高染料敏化太阳能电池的性能

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-21 DOI:10.1016/j.jpowsour.2024.235889
Shanmuganathan Venkatesan , Yi-Che Chang , Hsisheng Teng , Yuh-Lang Lee
{"title":"利用有效的致密层和直接接触式电池结构提高染料敏化太阳能电池的性能","authors":"Shanmuganathan Venkatesan ,&nbsp;Yi-Che Chang ,&nbsp;Hsisheng Teng ,&nbsp;Yuh-Lang Lee","doi":"10.1016/j.jpowsour.2024.235889","DOIUrl":null,"url":null,"abstract":"<div><div>Compact layers (CLs) characterized by dense structures play a crucial role in enhancing the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Previous studies focus on preparing CLs using a single precursor through one-step methods. In this study, the new CLs are prepared by sequentially depositing films using titanium tetrachloride and titanium diisopropoxide bis(acetylacetonate) via chemical bath deposition and spray pyrolysis, respectively. Scanning electron microscope images show that the resulting CL has a denser structure compared to those prepared by one-step methods. Moreover, electrochemical impedance analysis indicates that they can efficiently inhibit charge recombination at the interface, leading to higher PCE. Furthermore, when the CL and direct contact (DC) structure are applied simultaneously to fabricate the DSSCs using Y123 dye and Co<sup>2+/3+</sup> electrolyte, efficiencies of 9.86 % and 24.74 % can be obtained respectively, under one-sun and room light conditions (200 lx). Additionally, tandem cells using the DC structure for both top and bottom cells can achieve an efficiency of 29.68 % under room light illumination of 200 lx.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235889"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhance the performance of dye-sensitized solar cells with effective compact layers and direct contact cell structure\",\"authors\":\"Shanmuganathan Venkatesan ,&nbsp;Yi-Che Chang ,&nbsp;Hsisheng Teng ,&nbsp;Yuh-Lang Lee\",\"doi\":\"10.1016/j.jpowsour.2024.235889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Compact layers (CLs) characterized by dense structures play a crucial role in enhancing the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Previous studies focus on preparing CLs using a single precursor through one-step methods. In this study, the new CLs are prepared by sequentially depositing films using titanium tetrachloride and titanium diisopropoxide bis(acetylacetonate) via chemical bath deposition and spray pyrolysis, respectively. Scanning electron microscope images show that the resulting CL has a denser structure compared to those prepared by one-step methods. Moreover, electrochemical impedance analysis indicates that they can efficiently inhibit charge recombination at the interface, leading to higher PCE. Furthermore, when the CL and direct contact (DC) structure are applied simultaneously to fabricate the DSSCs using Y123 dye and Co<sup>2+/3+</sup> electrolyte, efficiencies of 9.86 % and 24.74 % can be obtained respectively, under one-sun and room light conditions (200 lx). Additionally, tandem cells using the DC structure for both top and bottom cells can achieve an efficiency of 29.68 % under room light illumination of 200 lx.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235889\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037877532401841X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877532401841X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以致密结构为特征的致密层(CL)在提高染料敏化太阳能电池(DSSC)的功率转换效率(PCE)方面发挥着至关重要的作用。以往的研究侧重于通过一步法使用单一前驱体制备 CL。在本研究中,通过化学沉积法和喷雾热解法,分别使用四氯化钛和二异丙氧基双(乙酰丙酮)钛依次沉积薄膜,制备出了新型 CL。扫描电子显微镜图像显示,与一步法制备的 CL 相比,所制备的 CL 具有更致密的结构。此外,电化学阻抗分析表明,它们能有效抑制界面上的电荷重组,从而获得更高的 PCE。此外,当 CL 和直接接触(DC)结构同时用于制造使用 Y123 染料和 Co2+/3+ 电解质的 DSSC 时,在单太阳和室光条件(200 lx)下可分别获得 9.86 % 和 24.74 % 的效率。此外,在 200 lx 的室内光照条件下,上下电池均采用直流结构的串联电池可实现 29.68 % 的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhance the performance of dye-sensitized solar cells with effective compact layers and direct contact cell structure
Compact layers (CLs) characterized by dense structures play a crucial role in enhancing the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Previous studies focus on preparing CLs using a single precursor through one-step methods. In this study, the new CLs are prepared by sequentially depositing films using titanium tetrachloride and titanium diisopropoxide bis(acetylacetonate) via chemical bath deposition and spray pyrolysis, respectively. Scanning electron microscope images show that the resulting CL has a denser structure compared to those prepared by one-step methods. Moreover, electrochemical impedance analysis indicates that they can efficiently inhibit charge recombination at the interface, leading to higher PCE. Furthermore, when the CL and direct contact (DC) structure are applied simultaneously to fabricate the DSSCs using Y123 dye and Co2+/3+ electrolyte, efficiencies of 9.86 % and 24.74 % can be obtained respectively, under one-sun and room light conditions (200 lx). Additionally, tandem cells using the DC structure for both top and bottom cells can achieve an efficiency of 29.68 % under room light illumination of 200 lx.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1