用于颅底重建的具有防漏、抗菌和成骨整合功能的 Janus 径向纳米纤维贴片

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Materials Science & Engineering C-Materials for Biological Applications Pub Date : 2024-11-19 DOI:10.1016/j.bioadv.2024.214122
Xiaomei Xia , Zhen Yang , Hongshui Wang , Werner E.G. Müller , Xiaohong Wang , Lei Yang , Huan Zhou , Yi Xia , Chunyong Liang
{"title":"用于颅底重建的具有防漏、抗菌和成骨整合功能的 Janus 径向纳米纤维贴片","authors":"Xiaomei Xia ,&nbsp;Zhen Yang ,&nbsp;Hongshui Wang ,&nbsp;Werner E.G. Müller ,&nbsp;Xiaohong Wang ,&nbsp;Lei Yang ,&nbsp;Huan Zhou ,&nbsp;Yi Xia ,&nbsp;Chunyong Liang","doi":"10.1016/j.bioadv.2024.214122","DOIUrl":null,"url":null,"abstract":"<div><div>During transsphenoidal surgery to remove pituitary adenomas, the structures of the skull base consisting of the dura mater and skull base bones are destroyed, making it crucial to restore the natural structure of the skull base. We crafted a dual-layer Janus fiber membrane utilizing the layer-by-layer electrospinning technique, comprising an osteoblast layer and a leak-proof antimicrobial layer. Specifically, RPG-1%PCPP radially aligned nanofibrous membranes (osteoblasts) can promote directional cell migration and facilitate cellular osteogenic differentiation. TPC nanofibrous membranes (leak-proof antimicrobial layer) can prevent fluid leakage while releasing antimicrobials for resisting bacterial infections. Bacteriostatic tests showed that cefazolin had a good inhibitory ability against both <em>E. coli</em> and <em>S. aureus</em>. RT-PCR showed that radial fiber membrane loaded with PCPP promoted the expression of ALP and BMP-2 genes, thereby promoting osteogenic differentiation of cells. Animal experiments showed that the BV/TV in the TPC/RPG-1%PCPP fiber membrane group was significantly higher than that in the blank group, indicating that TPC/RPG-1%PCPP could promote bone tissue regeneration.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"168 ","pages":"Article 214122"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Janus radial nanofiber patch with leak-proof, antimicrobial, and osteogenic integration for skull base reconstruction\",\"authors\":\"Xiaomei Xia ,&nbsp;Zhen Yang ,&nbsp;Hongshui Wang ,&nbsp;Werner E.G. Müller ,&nbsp;Xiaohong Wang ,&nbsp;Lei Yang ,&nbsp;Huan Zhou ,&nbsp;Yi Xia ,&nbsp;Chunyong Liang\",\"doi\":\"10.1016/j.bioadv.2024.214122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>During transsphenoidal surgery to remove pituitary adenomas, the structures of the skull base consisting of the dura mater and skull base bones are destroyed, making it crucial to restore the natural structure of the skull base. We crafted a dual-layer Janus fiber membrane utilizing the layer-by-layer electrospinning technique, comprising an osteoblast layer and a leak-proof antimicrobial layer. Specifically, RPG-1%PCPP radially aligned nanofibrous membranes (osteoblasts) can promote directional cell migration and facilitate cellular osteogenic differentiation. TPC nanofibrous membranes (leak-proof antimicrobial layer) can prevent fluid leakage while releasing antimicrobials for resisting bacterial infections. Bacteriostatic tests showed that cefazolin had a good inhibitory ability against both <em>E. coli</em> and <em>S. aureus</em>. RT-PCR showed that radial fiber membrane loaded with PCPP promoted the expression of ALP and BMP-2 genes, thereby promoting osteogenic differentiation of cells. Animal experiments showed that the BV/TV in the TPC/RPG-1%PCPP fiber membrane group was significantly higher than that in the blank group, indicating that TPC/RPG-1%PCPP could promote bone tissue regeneration.</div></div>\",\"PeriodicalId\":51111,\"journal\":{\"name\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"volume\":\"168 \",\"pages\":\"Article 214122\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772950824003650\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003650","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在经蝶窦手术切除垂体腺瘤的过程中,由硬脑膜和颅底骨组成的颅底结构遭到破坏,因此恢复颅底的自然结构至关重要。我们利用逐层电纺技术制作了双层 Janus 纤维膜,包括成骨细胞层和防漏抗菌层。具体来说,RPG-1%PCPP径向排列的纳米纤维膜(成骨细胞)可促进细胞定向迁移,促进细胞成骨分化。TPC 纳米纤维膜(防漏抗菌层)可防止液体渗漏,同时释放抗菌剂以抵抗细菌感染。抑菌测试表明,头孢唑啉对大肠杆菌和金黄色葡萄球菌都有很好的抑制能力。RT-PCR 试验表明,载入 PCPP 的径向纤维膜可促进 ALP 和 BMP-2 基因的表达,从而促进细胞的成骨分化。动物实验表明,TPC/RPG-1%PCPP纤维膜组的BV/TV明显高于空白组,表明TPC/RPG-1%PCPP可促进骨组织再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Janus radial nanofiber patch with leak-proof, antimicrobial, and osteogenic integration for skull base reconstruction
During transsphenoidal surgery to remove pituitary adenomas, the structures of the skull base consisting of the dura mater and skull base bones are destroyed, making it crucial to restore the natural structure of the skull base. We crafted a dual-layer Janus fiber membrane utilizing the layer-by-layer electrospinning technique, comprising an osteoblast layer and a leak-proof antimicrobial layer. Specifically, RPG-1%PCPP radially aligned nanofibrous membranes (osteoblasts) can promote directional cell migration and facilitate cellular osteogenic differentiation. TPC nanofibrous membranes (leak-proof antimicrobial layer) can prevent fluid leakage while releasing antimicrobials for resisting bacterial infections. Bacteriostatic tests showed that cefazolin had a good inhibitory ability against both E. coli and S. aureus. RT-PCR showed that radial fiber membrane loaded with PCPP promoted the expression of ALP and BMP-2 genes, thereby promoting osteogenic differentiation of cells. Animal experiments showed that the BV/TV in the TPC/RPG-1%PCPP fiber membrane group was significantly higher than that in the blank group, indicating that TPC/RPG-1%PCPP could promote bone tissue regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.80
自引率
0.00%
发文量
501
审稿时长
27 days
期刊介绍: Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include: • Bioinspired and biomimetic materials for medical applications • Materials of biological origin for medical applications • Materials for "active" medical applications • Self-assembling and self-healing materials for medical applications • "Smart" (i.e., stimulus-response) materials for medical applications • Ceramic, metallic, polymeric, and composite materials for medical applications • Materials for in vivo sensing • Materials for in vivo imaging • Materials for delivery of pharmacologic agents and vaccines • Novel approaches for characterizing and modeling materials for medical applications Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources. Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!
期刊最新文献
Relation between shape-tailored CeO2 nanoparticles morphology and hemocompatibility and antimicrobial effect Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics Digital light processing of photo-crosslinkable gelatin to create biomimetic 3D constructs serving small intestinal tissue regeneration Glycosylation-driven interactions of nanoparticles with the extracellular matrix: Implications for inflammation and drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1